Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt P = n4 + n3 + n2 + n + 1
Với n = 1 => A = 3 => loại
Với n \(\ge\)2 ta có:
(2n2 + n - 1) < 4A \(\le\)(2n2 + n)2
=> 4A = (2n2 + n)2
Vậy: n = 2 thỏa mãn đề bài
*P/s: Mik ko chắc*
Đặt \(n^2+18n+2020=a^2\)
\(\Leftrightarrow\left(n^2+18n+81\right)+1939=a^2\)
\(\Leftrightarrow\left(n+9\right)^2+1939=a^2\)
\(\Leftrightarrow\left(a+n+9\right)\left(a-n-9\right)=1939=7\cdot277\)( e dùng casio ạ )
\(TH1:\hept{\begin{cases}a+n+9=7\\a-n-9=277\end{cases}}\Leftrightarrow\hept{\begin{cases}a+n=-2\\a-n=286\end{cases}}\Leftrightarrow2n=-288\Leftrightarrow n=-144\left(KTM\right)\)
\(TH2:\hept{\begin{cases}a+n+9=277\\a-n-9=7\end{cases}}\Leftrightarrow\hept{\begin{cases}a+n=268\\a-n=16\end{cases}}\Leftrightarrow2n=252\Leftrightarrow n=126\left(TM\right)\)
Vậy \(n=126\)
AI KẾT BN KO!
TIỆN THỂ TK MÌNH LUÔN NHA!
KONOSUBA!!!
AI TK MÌNH MÌNH TK LẠI 3 LẦN.
Để S là số chính phương
\(\Rightarrow2^n+1=k^2\Rightarrow2^n=k^2-1=\left(k-1\right).\left(k+1\right)\)
\(\text{Vì }2^n\text{ chẵn }\Rightarrow\left(k-1\right).\left(k+1\right)\text{ chẵn }\)=> k-1 và k+1 là 2 số chẵn liên tiếp.
Dễ thấy 2n =2.2..2 ( n chữ số 2)
Mà k-1 và k+1 là tích của 2 số chẵn liên tiếp (hơn kém nhau 2 đơn vị) => k-1=2 và k+1=4 <=> k=3
=> 2n+1=32=9 => 2n=8 <=> n=3
Vậy n=3
\(A=n^2+n+6\)là số chính phương thì \(4A=4n^2+4n+24\)cũng là số chính phương. Giả sử 4A = p2 (p thuộc N)
\(\Rightarrow4n^2+4n+1+23=p^2\Rightarrow\left(2n+1\right)^2+23=p^2\Rightarrow p^2-\left(2n+1\right)^2=23\)
\(\Rightarrow\left(p+2n+1\right)\left(p-2n-1\right)=23\times1\)(2)
Với n ; p là số tự nhiên thì p+2n+1 là số lớn; p-2n-1 là số bé. Do đó:
(2) => \(\hept{\begin{cases}p+2n+1=23\\p-\left(2n+1\right)=1\end{cases}\Rightarrow2n+1=11\Rightarrow}n=5\)
Vậy với n = 5 thì A = n2 + n + 6 là số chính phương.