K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
7 tháng 2 2021

ta có 

\(\hept{\begin{cases}n-7=a^2\\n+16=b^2\end{cases}\Rightarrow b^2-a^2=23\Leftrightarrow\left(b+a\right)\left(b-a\right)=23}\)

 dễ thấy n phải lớn hơn 7 và b>a nên ta có \(\hept{\begin{cases}a+b=23\\b-a=1\end{cases}\Rightarrow\hept{\begin{cases}a=11\\b=12\end{cases}\Rightarrow}n=128}\)

9 tháng 3 2022

-Vì 4n+5, 9n+7 đều là các số chính phương nên đặt \(4n+5=a^2;9n+7=b^2\)

\(\Rightarrow9\left(4n+5\right)=9a^2;4\left(9n+7\right)=4b^2\)

\(\Rightarrow36n+45=9a^2;36n+28=4b^2\)

\(\Rightarrow9a^2-4b^2=36n+45-\left(36n+28\right)=17\)

\(\Rightarrow\left(3a-2b\right)\left(3a+2b\right)=1.17\)

-Vì \(3a-2b< 3a+2b\)

\(\Rightarrow\left[{}\begin{matrix}3a-2b=1\\3a+2b=17\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=3\\b=4\end{matrix}\right.\)

-Vậy \(n=1\) thì 4n+5 và 9n+7 là các số chính phương.

9 tháng 3 2022

-Vì \(n+1,n+13\) là các số chính phương nên đặt \(n+1=a^2,n+13=b^2\)

\(\Rightarrow b^2-a^2=n+13-\left(n+1\right)=12\)

\(\Rightarrow\left(b-a\right)\left(b+a\right)=12=\left[{}\begin{matrix}1.12\\2.6\\3.4\end{matrix}\right.\)

-Vì \(b-a< b+a\)

\(\Rightarrow\left[{}\begin{matrix}b-a=1;b+a=12\\b-a=2;b+a=6\\b-a=3;b+a=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=\dfrac{13}{2};a=\dfrac{11}{2}\left(loại\right)\\b=4;a=2\left(nhận\right)\\b=\dfrac{7}{2};a=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

-Vậy \(n=3\) thì n+1 và n+12 đều là các số chính phương.

 

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

22 tháng 4 2019

\(\hept{\begin{cases}n+18=a^2\\n-41=b^2\end{cases}}\)

=> \(a^2-b^2=59=1.59=59.1=\left(a-b\right)\left(a+b\right)\)

Tự Tính

n+18 và n-41 là số cp=>n>41 
đặt n+18=k²=>n=k²-18----(1) 
n-41=t²=>n=t²+41-----(2) 
từ (1)và(2) => k²-18=t²+41 
⇔k²-t²=41+18=59 
⇔(k-t)(k+t)=59=1.59=(-1).(-59) 
TH1 :.....k-t=1 
.............k+t=59 
=>k=30 , t=29 
Thử lại n+18=30²=>n=882 
............n-41=882-41=841=29² (t/m~) 
............n-41=29²=>n=872 
...........n+18=872+18=900=30² (t/m~) 
TH2 :k-t=-1 
........k+t=-59 
=>k=-30 
....t=-29 
Thử lại n+18=(-30)²=>n=882 
...........n-41=(-29)²=>n=872 
Vậy số tự nhiên n là 872 hoặc 882

16 tháng 3 2018

n+18 và n-41 là số cp=>n>41 
đặt n+18=k²=>n=k²-18----(1) 
n-41=t²=>n=t²+41-----(2) 
từ (1)và(2) => k²-18=t²+41  ⇔k²-t²=41+18=59  ⇔(k-t)(k+t)=59=1.59=(-1).(-59) 
TH1 :.....k-t=1 
.............k+t=59 
=>k=30 , t=29 
Thử lại n+18=30²=>n=882 
............n-41=882-41=841=29² (t/m~) 
............n-41=29²=>n=872 
...........n+18=872+18=900=30² (t/m~) 
TH2 :k-t=-1 
........k+t=-59 
=>k=-30 
....t=-29 
Thử lại n+18=(-30)²=>n=882 
...........n-41=(-29)²=>n=872 
Vậy số tự nhiên n là 872 hoặc 882

:3

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:
Đặt $n+31=a^2$ với $a$ tự nhiên. Khi đó: $2n+5=2(a^2-31)+5=2a^2-57$
Như vậy, ta cần tìm $a$ sao cho $2a^2-57$ là số chính phương.

Ta có 1 tính chất quen thuộc: Số chính phương lẻ chia 8 dư $1$ (bạn có thể xét 1 scp $x^2$ và xét các TH $x=4k+...$ để cm)

$\Rightarrow 2a^2-57\equiv 1\pmod 8$

$\Rightarrow 2a^2\equiv 58\pmod 8$

$\Rightarrow a^2\equiv 29\equiv 5\pmod 8$

(điều này vô lý do scp chia 8 dư 0,1 hoặc 4)

Vậy không tồn tại số tự nhiên $a$, tức là không tồn tại số $n$ cần tìm.

5 tháng 11 2017

Số cây cam là:

120:(2+3)x2=48(cây)

Số cây xoài là:

120:(5+1)=20(cây)

Số cây chanh là:

120-(48+20)=52(cây)

          Đáp số:52 cây

P/s cho tớ xin lỗi nha nếu bạn nào thì sau này mình sẽ ủng hộ lại ok

4 tháng 8 2018

Hãy tích cho tui đi

khi bạn tích tui

tui không tích lại bạn đâu

THANKS