Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left(2n+1\right)^3=27\)
\(\left(2n+1\right)^3=3^3\)
\(2n+1=3\)
\(2n=3+1\)
\(2n=4\)
\(n=4\div2\)
\(n=2\)
b)
\(\left(n+2\right)^2=\left(n+2\right)^4\)
\(\left(n+2\right)^4-\left(n+2\right)^2=0\)
\(\left(n+2\right)^2\cdot\left(n+2\right)^2-\left(n+2\right)^2\cdot1=0\)
\(\left(n+2\right)^2\cdot\left[\left(n+2\right)^2-1\right]=0\)
\(\Rightarrow\left(n+2\right)^2=0hoạc\left(n+2\right)^2-1=0\)
\(\left(n+2\right)^2=0\)
\(n+2=0\)
\(n=0+2\)
\(n=2\)
\(\left(n+2\right)^2-1=0\)
\(\left(n+2\right)^2=0+1\)
\(\left(n+2\right)^2=1\)
\(n+2=1\)
\(n=1+2\)
\(n=3\)
Vậy \(n\in\left\{2;3\right\}\)
a,( 2 n + 1)3 = 27
( 2 n + 1)3 = 33
2n+1=3
2n=3-1
2n=2
n=2:2
n=1
a, 3n = 27
3n = 3 mũ 3
b, 5n = 625
5n = 5 mũ 4
c,12n = 144
12n = 12 mũ 2
\(a,3^n=3^4\)
\(\Rightarrow n=4\)
\(b,2008^n=2008^0\)
\(\Rightarrow n=0\)
a) \(9.27^n=3^5\)
\(\left(3^3\right)^n=3^5:3^2\)
\(3^{3n}=3^3\)
\(\Rightarrow3n=3\Leftrightarrow n=1\)
b) \(\left(2^3.4\right).2^n=4\)
\(32.2^n=4\)
\(2^n=8\Rightarrow x=3\)
c) \(3^2.3^4.3^n=3^7\)
\(3^{2+4+n}=3^7\)
\(\Rightarrow6+n=7\Leftrightarrow n=1\)
d) \(3^{2n}=81\)
\(3^{2n}=3^4\)
\(\Rightarrow2n=4\Leftrightarrow n=2\)
a, 9.27n= 35
32.27n=35
27n=35: 32
27n=33=27
27n=271
=>n=1
b, Bạn sai đề b, ak?
c, 32.34.3n=37
3n=37:34:32
3n=31
=>3=1
d, 32n=81
32n=34
=>2n=4
n=4:2
n=2
k giùm mk nha
\(\left(2n-1\right)^4:\left(2n-1\right)=27\)
\(\left(2n-1\right)^3=3^3\)
\(\Rightarrow2n-1=3\)
\(\Rightarrow2n=3+1\)
\(\Rightarrow2n=4\)
\(\Rightarrow n=4:2\)
\(\Rightarrow n=2\)
(2n - 1)4 : (2n - 1)= 27.
(2n-1)3=27
(2n-1)3=33
=>2n-1=3
2n=4
x=2
Vậy n=2
a) (2n + 1)3 = 33
\(\Rightarrow\)2n + 1 = 3
2n = 3 - 1
2n = 2
n = 2 : 2
n = 1
a) (2n+1)^3=3^3
(2n+1)=3
2n=2
n=1
b) (n-2)^2=(n-2)^4
(n-2)^2=1
n-2 =1 hoặc n-2 =-1
n=3 hoặc n =1