Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số tự nhiên n để các biểu thức sau là số tự nhiên
a,A=\(\frac{16}{3n+1}\)
b,B=\(\frac{n+3}{n-3}\)
Tìm số tự nhiên n để n có giá trị là một số tự nhiên a= n+3/ n+3
Đặt d=UC(32n+4,36n+9)
=> \(\hept{\begin{cases}32n+4⋮d\\36n+9⋮d\end{cases}\Rightarrow}8\left(36n+9\right)-9\left(32n+4\right)⋮d\Leftrightarrow36⋮d\)
=> d=1,2,3,6,12,18,36
Ta thấy: 36n+9 không chia hết cho 2 => d=1,3
Để phân số tối giản d\(\ne\)3
mà 36n+9 chia hết cho 3
=> 32n+4 không chia hết cho 3 hay 2n+1 không chia hết cho 3
=> \(\orbr{\begin{cases}2n+1=3k+1\\2n+1=3k+2\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=\frac{3k}{2},k_{ }chẵn\\n=\frac{3k+1}{2},k_{ }lẻ\end{cases}}\)
Vậy với n=... thì phân số tối giản
a) 2n = 16
=> 2n = 24
=> n = 4
b) 4n = 64
=> 4n = 43
=> n = 3
c) 15n = 225
=> 15n = 152
=> n = 2
\(\frac{4}{3.5}+\frac{8}{5.9}+\frac{12}{9.15}+...+\frac{32}{n\left(n+16\right)}=\frac{16}{25}\)
\(2\left(\frac{1}{3}-\frac{1}{5}\right)+2\left(\frac{1}{5}-\frac{1}{9}\right)+2\left(\frac{1}{9}-\frac{1}{15}\right)+...+2\left(\frac{1}{n}-\frac{1}{n+16}\right)=\frac{16}{25}\)
\(2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{15}+...+\frac{1}{n}-\frac{1}{n+16}\right)=\frac{16}{25}\)
\(2\left(\frac{1}{3}-\frac{1}{n+16}\right)=\frac{16}{25}\)
\(\frac{1}{3}-\frac{1}{n+16}=\frac{8}{25}\)
\(\frac{1}{n+16}=\frac{1}{75}\)
\(\Rightarrow n+16=75\)
\(\Rightarrow n=59\)
a)2n = 16
2n=24
=>n=4
b) 4n=64
4n=43
=>n=3
c) 15n=225
15n=152
=>n=2
Ta có: \(n^2-n⋮5\Rightarrow n\left(n-1\right)⋮5\)
Do đó \(\orbr{\begin{cases}n⋮5\\n-1⋮5\end{cases}}\)
Suy ra n có tận cùng là 0 ; 5 hoặc n-1 có tận cùng là 0, 5
Suy ra n có tận cùng là 0, 5 hoặc 1, 6
Vì n chia hết cho 2
nên n có tận cùng là 0 hoặc là 6
a) ta có: 2n=24=>n=4
b)ta có: 4n=43=>n=3
c)ta có: 15n=152=>n=2
d)ta có: 12n=124=>n=4
Chúc em học tốt nha