Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) n là số nguyên
n^2 + 2014 = k^2 (k nguyên)
=> k^2 - n^2 = 2014
=> (k + n)(k - n) = 2014
Ta biết nếu k và n nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.Ở đây tích của chúng là 2014 nên chúng phải cùng chẵn.Nhưng 2014 không chia hết cho 4 nên không thể là tích của 2 số chẵn.
Vậy không có n thuộc Z thỏa mãn ĐK đề bài.
a) ta có (a-b)(a+b)=a^2 -ba+ba-b^2=a^2-b^2
Đặt 2014+m2=n2(m∈Z∈Z,m>n)
<=>n2-m2=2014<=>(m+n)(m-n)=2014
Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ
Suy ra m+n và m-n đều chẵn,m+n>m-n
Mà 2014=2.19.53=>m+n và m-n không cùng chẵn
=>không có giá trị nào thoả mãn
Xét 2 trường hợp :
a) n là số nguyên
n^2 + 2014 = k^2 (k nguyên)
=> k^2 - n^2 = 2014
=> (k + n)(k - n) = 2014
nếu k và n nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.Ở đây tích của chúng là 2014 nên chúng phải cùng chẵn.Nhưng 2014 không chia hết cho 4 nên không thể là tích của 2 số chẵn.
Vậy không có n thuộc Z thỏa mãn ĐK đề bài.
b) n là số thực
n^2 +2014 = k^2 (k nguyên) (ĐK có nghiệm k > 44)
=> n^2 = k^2 - 2014 => n = \(\pm\sqrt{k^2-2014}\)
Vậy có vô số số n thuộc R thỏa mãn ĐK đề bài (n = \(\pm\sqrt{k^2-2014}\) với k nguyên, k > 44)
Gọi số chình phương đó là: b2
ta có: 2014+ n2=b2
2014= b2-n2
2014=(b+n).(b-n)
nếu n là số lẻ thì n2 là số lẻ nên b2 là số lẻ
nếu n là số chẵn thì n2 là số chẵn nên b2 là số chẵn
vậy (b+n) và (b-n) khi chia cho 2 thì đồng dư (1)
ta có: 2014=1.2014=2.1007=19.106 ( mẫu thuẫn với (1) )
nên không có số tự nhiên n để 2014 + n2 là số chính phương.
Xét 2 trường hợp :
a) n là số nguyên
n^2 + 2014 = k^2 (k nguyên)
=> k^2 - n^2 = 2014
=> (k + n)(k - n) = 2014
Ta biết nếu k và n nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.Ở đây tích của chúng là 2014 nên chúng phải cùng chẵn.Nhưng 2014 không chia hết cho 4 nên không thể là tích của 2 số chẵn.
Vậy không có n thuộc Z thỏa mãn ĐK đề bài.
b) n là số thực
n^2 +2014 = k^2 (k nguyên) (ĐK có nghiệm k > 44)
=> n^2 = k^2 - 2014 => n = +/- căn (k^2 - 2014)
Vậy có vô số số n thuộc R thỏa mãn ĐK đề bài (n = +/- căn (k^2 - 2014) với k nguyên, k > 44)
--------------------------------------...
(Nếu đề bài nêu rõ n nguyên thì bài này vô nghiệm)
gọi số chính phương đó là b2
ta có n2 +2014=b2
2014=b2-n2
2014=(b+n).(b-n)
nếu n là số lẻ thì n2là số lẻ nên b2là số lẻ
nếu n là số chẵn thì n2là số chẵn nên b2là số chẵn
vậy b+n và b-n khi chia cho 2 là đồng dư
ta có 2014=1.2014=2.1007=19.106
nên không có số tự nhiên n để n2+2014 là số chính phương
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
nhớ chọn câu trả lời của mình nhe
Do a2 là số chính phương nên a2 chia 4 chỉ có thể dư 0 hoặc 1
Mà 2014 chia 4 dư 2
=> a2 + 2014 chia 4 dư 2 hoặc 3, không là số chính phương
Vậy không tìm được giá trị của a thỏa mãn đề bài
Ủng hộ mk nha ☆_☆^_-