K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Do alà số chính phương nên a2 chia 4 chỉ có thể dư 0 hoặc 1

Mà 2014 chia 4 dư 2

=> a2 + 2014 chia 4 dư 2 hoặc 3, không là số chính phương

Vậy không tìm được giá trị của a thỏa mãn đề bài

Ủng hộ mk nha ☆_☆^_-

11 tháng 4 2016

 b) n là số nguyên 
n^2 + 2014 = k^2 (k nguyên) 
=> k^2 - n^2 = 2014 
=> (k + n)(k - n) = 2014 
Ta biết nếu k và n nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.Ở đây tích của chúng là 2014 nên chúng phải cùng chẵn.Nhưng 2014 không chia hết cho 4 nên không thể là tích của 2 số chẵn. 
Vậy không có n thuộc Z thỏa mãn ĐK đề bài. 

a) ta có (a-b)(a+b)=a^2 -ba+ba-b^2=a^2-b^2

Đặt 2014+m2=n2(m∈Z∈Z,m>n)

<=>n2-m2=2014<=>(m+n)(m-n)=2014

Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ 

Suy ra m+n và m-n đều chẵn,m+n>m-n

Mà 2014=2.19.53=>m+n và m-n không cùng chẵn

=>không có giá trị nào thoả mãn

 Xét 2 trường hợp : 
a) n là số nguyên 
n^2 + 2014 = k^2 (k nguyên) 
=> k^2 - n^2 = 2014 
=> (k + n)(k - n) = 2014 
nếu k và n nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.Ở đây tích của chúng là 2014 nên chúng phải cùng chẵn.Nhưng 2014 không chia hết cho 4 nên không thể là tích của 2 số chẵn. 
Vậy không có n thuộc Z thỏa mãn ĐK đề bài. 

b) n là số thực 
n^2 +2014 = k^2 (k nguyên) (ĐK có nghiệm k > 44) 
=> n^2 = k^2 - 2014 => n = \(\pm\sqrt{k^2-2014}\)
Vậy có vô số số n thuộc R thỏa mãn ĐK đề bài (n = \(\pm\sqrt{k^2-2014}\) với k nguyên, k > 44) 

4 tháng 4 2015

1.Mính ko bik

2.ko biik

3.20

 

12 tháng 12 2016

cau 3 =2

100%

26 tháng 1 2015

  Gọi số chình phương đó là: b2

  ta có: 2014+ n2=b2

             2014= b2-n2

           2014=(b+n).(b-n)

   nếu n là số lẻ thì n2 là số lẻ nên b2 là số lẻ

   nếu n là số chẵn thì n2 là số chẵn nên b2 là số chẵn

   vậy (b+n) và (b-n) khi chia cho 2 thì đồng dư   (1)

 ta có: 2014=1.2014=2.1007=19.106 ( mẫu thuẫn với (1) )

  nên không có số tự nhiên n để 2014 + n2 là số chính phương.

 

8 tháng 1 2017

cac ban co cach giai khac ko

30 tháng 11 2016

 Xét 2 trường hợp : 
a) n là số nguyên 
n^2 + 2014 = k^2 (k nguyên) 
=> k^2 - n^2 = 2014 
=> (k + n)(k - n) = 2014 
Ta biết nếu k và n nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.Ở đây tích của chúng là 2014 nên chúng phải cùng chẵn.Nhưng 2014 không chia hết cho 4 nên không thể là tích của 2 số chẵn. 
Vậy không có n thuộc Z thỏa mãn ĐK đề bài. 

b) n là số thực 
n^2 +2014 = k^2 (k nguyên) (ĐK có nghiệm k > 44) 
=> n^2 = k^2 - 2014 => n = +/- căn (k^2 - 2014) 
Vậy có vô số số n thuộc R thỏa mãn ĐK đề bài (n = +/- căn (k^2 - 2014) với k nguyên, k > 44) 
--------------------------------------... 
(Nếu đề bài nêu rõ n nguyên thì bài này vô nghiệm)

4 tháng 4 2016

gọi số chính phương đó là b2

ta có  n+2014=b2 

         2014=b2-n2

            2014=(b+n).(b-n)

nếu n là số lẻ thì n2là số lẻ nên b2là số lẻ 

nếu n là số chẵn thì n2là số chẵn nên b2là số chẵn 

vậy b+n và b-n  khi chia cho 2 là đồng dư

ta có 2014=1.2014=2.1007=19.106

nên không có số tự nhiên n để n2+2014 là số chính phương

24 tháng 1 2015

Nếu n=0,suy ra A=0(thỏa mãn)

Nếu n=1 suy rs A=0(thỏa mãn)

Nếu n>1,ta có

A=n.(n^3-2.n^2+3n-2)

A=n.[n.(n^2-2n+3)-2]

A=n.[n.(n-1)^2+2.(n-1)]

A=n.(n-1).[n.(n-1)+2]

Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2     (tự chứng minh)

Suy ra A không phải là số chính phương với n>1

                                Vậy n={0;1}

nhớ chọn câu trả lời của mình nhe