Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)
\(\Leftrightarrow2^{x-2}.2+5.2^{x-2}=\frac{7}{32}\)
\(\Leftrightarrow2^{x-2}\left(5+2\right)=\frac{7}{32}\)
\(\Leftrightarrow2^{x-2}.7=\frac{7}{32}\)
\(\Leftrightarrow2^{x-2}=\frac{1}{32}\)
\(\Leftrightarrow2^{x-2}=2^{-5}\)
\(\Leftrightarrow x-2=-5\)
\(\Leftrightarrow x=-3\)
b)\(\left|x+\frac{1}{5}\right|-7=-5\)
\(\Leftrightarrow\left|x+\frac{1}{5}\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=2\\x+\frac{1}{5}=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{5}\\x=\frac{-11}{5}\end{cases}}\)
ta có \(\text{2xy + x - 2y = 4}\)
\(\Leftrightarrow\text{2y(x - 1) + x = 4}\)
\(\Leftrightarrow\text{2y(x - 1) + x - 1 = 3}\)
\(\Leftrightarrow\text{2y(x - 1) + (x - 1) = 3}\)
\(\Leftrightarrow\text{(x - 1).(2y + 1) = 3}\)
=> x-1 và 2y+1 thuộc Ư(3)
\(\RightarrowƯ\left(3\right)=\left\{\text{-3;-1;1;3}\right\}\)
x-1 | -1 | 3 | 1 | -3 |
2y+1 | -3 | 1 | 3 | -1 |
x | 0 | 4 | 2 | -2 |
y | -2 | 0 | 1 | -2 |
vậy các cặp x,y thỏa mãn là ...
b) tương tự
\(x^2y-x+xy=6\)
\(x\left(xy-1\right)+\left(xy-1\right)=6-1\)
\(\left(x+1\right)\left(xy-1\right)=5\)
Khi \(\hept{\begin{cases}x+1=1\\xy-1=5\end{cases}\Rightarrow\hept{\begin{cases}x=0\\0-1=5\left(\text{vô lý}\right)\end{cases}}}\)
Khi \(\hept{\begin{cases}x+1=-1\\xy-1=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)
Khi \(\hept{\begin{cases}x+1=5\\xy-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=\frac{1}{2}\notinℤ\end{cases}}}\)
Khi \(\hept{\begin{cases}x+1=-5\\xy-1=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-6\\y=0\end{cases}}}\)
Vậy \(\left(x;y\right)\in\left\{\left(-6;0\right);\left(-2;2\right)\right\}\)
\(x^2y-x+xy=6\)
\(\Rightarrow xy\left(x+1\right)-x-1=5\)
\(\Rightarrow\left(xy-1\right)\left(x+1\right)=5\)
Lập bảng là ra
b. Câu hỏi của Tiểu thư họ Vũ - Toán lớp 9 - Học toán với OnlineMath
a) \(\frac{x-3}{5}=\frac{2x-5}{45}\)
=> \(\left(x-3\right)\cdot45=5\left(2x-5\right)\)
=> \(45x-135=10x-25\)
=> \(45x-10x=-25+135\)
=> \(35x=110\)
=> \(x=\frac{110}{35}=\frac{22}{7}\)
b) \(\frac{x}{3}=\frac{y}{4}\)và x + 2y = 33
=> \(\frac{x}{3}=\frac{2y}{8}\)và x + 2y = 33
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{2y}{8}=\frac{x+2y}{3+8}=\frac{33}{11}=3\)
\(\frac{x}{3}=3\Rightarrow x=9\)
\(\frac{2y}{8}=3\Rightarrow2y=24\Rightarrow y=12\)
\(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)
\(\Rightarrow\frac{5x+5}{10}-\frac{6}{10}=\frac{1}{2y}\)
\(\Rightarrow\frac{5x-1}{10}=\frac{1}{2y}\)
\(\Leftrightarrow\left(5x-1\right)2y=10\)
Lập bảng xong xét các trường hợp là ra
Ta có : \(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)
=> \(\frac{x+1}{2}-\frac{1}{2y}=\frac{3}{5}\)
=> \(\frac{xy+y-1}{2y}=\frac{3}{5}\)
=> 5(xy + y - 1) = 6y
=> 5xy + 5y - 5 = 6y
=> 5xy + 5y - 6y = 5
=> 5xy - y = 5
=> y(5x - 1) = 5
Vì x ; y là số nguyên
=> Ta có 5 = 1.5 = (-1).(-5)
Lập bảng xét các trường hợp
y | 1 | 5 | -1 | -5 |
5x - 1 | 5 | 1 | -5 | -1 |
x | 1,2(loại) | 0,4(loại) | -0,8(loại) | 0(tm) |
Vậy y = - 5 ; x = 0
đây nhé ; k nha Tìm x,y là số nguyên thỏa mãn: 3xy - 5 = x2 + 2y