Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
TL:
a)Để P+2;P+6; P+8 là số nguyên tố thì \(P=5\)
hc tốt
Tổng hai số nguyên tố là một số nguyên tố. Vậy hiệu của 2 số nguyên tố đó là 1 số nguyên tố hay là 1 hợp số .
VD : 7-3 = 4 ( hợp số )
5-2 = 3 ( số nguyên tố )
Chúc bn hok tốt !
Do p + 3; p + 5; p + 9 đều là các số nguyên tố > 3 nên các số này đều lẻ
=> p chẵn
Mà 2 là số nguyên tố chẵn duy nhất => p = 2
- Xét p=2 => p+4 =6 ( không là số nguyên tố )=> loại
- xét p=3 => p+4 =7 (t,m) và p+8 =11 ( t.m)
Nếu p>3 , p nguyên tố => p có dạng 3k+1 hoặc 3k+2 (k nguyen dương)
- p=3k+1 => p+8 = 3k+1+8 =3k+9 chia hết cho 3 => loại
- p=3k+2 => p+4 = 3k+2+4 = 3k+6 chia hết cho 3 => loại
=> với mọi p>3 đều không thỏa mãn
Vậy p=3 là giá trị thỏa mãn cần tìm
Số nguyên p là 3