Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)*Xét p=2=>p+2=4 là hợp số(loại)
*Xét p=3=>p+2=5
p+4=7(thoả mãn)
*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2
-Với p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số(loại)
-Với p=3k+2=>p+4=3k+2+4=3k+6=3.(k+2) là hợp số(loại)
Vậy p=3 thoả mãn đề bài.
b)*Xét p=2=>p+10=12 là hợp số(loại)
*Xét p=3=>p+10=13
p+14=17(thoả mãn)
*Xét p>3=>p có 2 dạng là 3k+1 và 3k+2
-Với p=3k+1=>p+14=3k+1+14=3k+15=3.(k+5) là hợp số(loại)
-Với p=3k+2=>p+10=3k+2+10=3k+12=3.(k+4) là hợp số(loại)
Vậy p=3 thoả mãn đề bài.
Bài 1: p = 4
Bài 2: p =3
Bài 3. p = 2
Bài 4: ....... tự giải đi
Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Với p=2 ta được p+4=6(hợp số)(Loại)
Với p=3 ta được p+4=7(số nguyên tố),p+8=11(snt)(TM)
Làm nốt xét p khác 3 nhé!
m=3
4m sẽ gấp đôi 2m mà
vậy có các cặp 1và2 2và4 3và6 4và8 5và10 6và12 ............
vậy cọng từng số trong cặp với 1thì ra sau đó thì làm nhu tìm x