Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2 + n + 17 ⋮ n + 1
n( n + 1 ) + 17 ⋮ n + 1
Vì n( n + 1 ) ⋮ n + 1
=> 17 ⋮ n + 1
=> n + 1 thuộc Ư(17) = { 1; 17; -1; -17 }
Tự làm
b) n2 + 25 ⋮ n + 2
n2 + 2n - 2n + 25 ⋮ n + 2
n( n + 2 ) - ( 2n - 25 ) ⋮ n + 2
Vì n( n + 2 ) ⋮ n + 2
=> 2n - 25 ⋮ n + 2
2n + 4 - 29 ⋮ n + 2
2( n + 2 ) - 29 ⋮ n + 2
Vì 2( n + 2 ) ⋮ n + 2
=> 29 ⋮ n + 2
=> n + 2 thuộc Ư(29) = { 1; 29; -1; -29 }
Tự làm
c) 3n2 + 5 ⋮ 3n + 1
3n2 + n - n + 5 ⋮ 3n + 1
n( 3n + 1 ) - ( n - 5 ) ⋮ 3n + 1
Vì n( 3n + 1 ) ⋮ 3n + 1
=> n - 5 ⋮ 3n + 1
<=> 3( n - 5 ) ⋮ 3n + 1
<=> 3n - 15 ⋮ 3n + 1
<=> 3n + 1 - 16 ⋮ 3n + 1
Vì 3n + 1 ⋮ 3n + 1
=> 16 ⋮ 3n + 1
=> 3n + 1 thuộc Ư(16) = { 1; 2; 4; 8; 16; -1; -2; -4; -8; -16 }
=> tự làm nốt xong nhớ thay x vào xem có thỏa mãn ko
mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)
ta có: A = 5+5^2+5^3+...+5^100
vì 5 chia hết cho 5
5^2 chia hết cho 5
5^3 chia hết cho 5
.......
5^100 chia hết cho 5
nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)
a, gọi UCLN(2n+1,3n+1) là d
Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+1 chia hết cho d=> 6n+2 chia hết cho d
=> (6n+3)-(6n+2)=1 chia hết cho d
=> d là ước của 1
Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau
a) ta có 2n+3=2(n+2)-1
=> 1 chia hết cho n+2
n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2
Nếu n+1=1 => n=0
Vậy n={-2;0}
b) Ta có n2+2n+5=n(n+2)+5
=> 5 chia hết cho n+2
n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n+2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |
n nguyên nhỉ ?
a) 13 - 2n chia hết cho 3n + 1
=> -6n + 39 chia hết cho 3n + 1
=> -6n - 2 + 41 chia hết cho 3n + 1
=> -2( 3n + 1 ) chia hết cho 3n + 1
Vì -2( 3n + 1 ) chia hết cho 3n + 1
=> 41 chia hết cho 3n + 1
đến đây dễ rồi
b) \(\frac{n^2-n+1}{n-2}=\frac{n^2-2n+n-2+3}{n-2}=\frac{n\left(n-2\right)+\left(n-2\right)+3}{n-2}\)
\(=\frac{\left(n-2\right)\left(n+1\right)+3}{n-2}=\frac{\left(n-2\right)\left(n+1\right)}{n-2}+\frac{3}{n-2}=\left(n+1\right)+\frac{3}{n-2}\)
Vì n nguyên nên n + 1 nguyên
nên để \(\frac{n^2-n+1}{n-2}\)nguyên thì \(\frac{3}{n-2}\)nguyên
đến đây dễ rồi
c) 5n2 - 3n + 2 chia hết cho n - 2
=> 5n2 - 10n + 7n - 14 + 16 chia hết cho n - 2
=> 5n( n - 2 ) + 7( n - 2 ) + 16 chia hết cho n - 2
=> ( n - 2 )( 5n + 7 ) + 16 chia hết cho n - 2
Vì ( n - 2 )( 5n + 7 ) chia hết cho n - 2
=> 16 chia hết cho n - 2
đến đây dễ rồi
Lời giải:
a)
$n^2+n+17\vdots n+1$
$\Leftrightarrow n(n+1)+17\vdots n+1$
$\Rightarrow 17\vdots n+1$
$\Rightarrow n+1\in\left\{\pm 1;\pm 17\right\}$
$\Rightarrow n\in\left\{0;-2;16; -18\right\}$
b)
$n^2+25\vdots n+2$
$\Leftrightarrow n^2-4+29\vdots n+2$
$\Leftrightarrow (n-2)(n+2)+29\vdots n+2$
$\Rightarrow 29\vdots n+2$
$\Rightarrow n+2\in\left\{\pm 1;\pm 29\right\}$
$\Rightarrow n\in\left\{-1;-3; -31; 27\right\}$
c)
$3n^2+5\vdots n-1$
$\Leftrightarrow 3n(n-1)+3(n-1)+8\vdots n-1$
$\Rightarrow 8\vdots n-1$
$\Rightarrow n-1\in\left\{\pm 1;\pm 2;\pm 4;\pm 8\right\}$
$\Rightarrow n\in\left\{0;2;3;-1;5;-3; -7; 9\right\}$
d)
$2n^2+11\vdots 3n+1$
$\Leftrightarrow 3(2n^2+11)\vdots 3n+1$
$\Leftrightarrow 6n^2+33\vdots 3n+1$
$\Leftrightarrow 2n(3n+1)-2n+33\vdots 3n+1$
$\Leftrightarrow 2n(3n+1)-(3n+1)+n+34\vdots 3n+1$
$\Rightarrow n+34\vdots 3n+1$
$\Rightarrow 3n+102\vdots 3n+1$
$\Leftrightarrow (3n+1)+101\vdots 3n+1$
$\Rightarrow 101\vdots 3n+1$
$\Rightarrow 3n+1\in\left\{pm 1;\pm 101\right\}$
$\Rightarrow n\in\left\{0; \frac{-2}{3}; \frac{100}{3}; -34\right\}$
Mà $n$ nguyên nên $n\in\left\{0; -34\right\}$