\(n^2-2n-4⋮11\)

b, \(2n^3+n^2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

       Câu hỏi của Nguyễn Trang Linh       

23 tháng 10 2018

 a) n^2 + 2n - 4 = n^2 + 2n - 15 + 11

= (n^2 + 5n - 3n -15) + 11

= (n - 3)(n + 5) + 11 để n^2 + 2n - 4 chia hết cho 11

<=> (n - 3).(n +5) chia hết cho 11

<=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)

n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)

n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)

Vậy với n = 11k + 3 hoặc n = 11k' - 5 thì.....

b)Sửa thành 2n^3 + n^2 +7n+1 mới lm đc nha!!

2n^3 + n^2 + 7n + 1 = n^2. (2n - 1) + 2n^2 + 7n + 1

= n^2. (2n -1) + n.(2n -1) + 8n + 1

= (n^2 + n)(2n -1) + 4.(2n -1) + 5

= (n^2 + n + 4)(2n -1) + 5

Để 2n^3 + n2 + 7n + 1 chia hết cho 2n - 1

<=> (n^2 + n + 4)(2n -1) + 5 chia hết cho 2n -1

<=> 5 chia hết cho 2n -1

<=> 2n - 1 ∈Ư(5) = {-5;-1;1;5} 

.......

13 tháng 11 2017

ko bít

13 tháng 11 2017

ko biết nói làm j

23 tháng 10 2018

Hỏi đáp Toán

18 tháng 7 2018

có ai giúp mik với

Bài 1:

a: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

b: \(\Leftrightarrow n^2-n-n+1+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

15 tháng 1 2019

a, \(n^2+2n-4=n^2+2n-15+11=\left(n-3\right)\left(n-5\right)+11\)

Để \(n^2+2n-4⋮11\Leftrightarrow\left(n-3\right)\left(n+5\right)⋮11\Leftrightarrow\left[{}\begin{matrix}n-3⋮11\\n+5⋮11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=BS11+3\\n=BS11-5\end{matrix}\right.\)

c,\(\dfrac{n^3-n^2+2n+7}{n^2+1}=\dfrac{n^3+n-n^2-1+n+8}{n^2+1}=\dfrac{n\left(n^2+1\right)-\left(n^2+1\right)+n+8}{n^2+1}=n-1+\dfrac{n+8}{n^2+1}\)

Để \(n^3-n^2+2n+7⋮n^2+1\Leftrightarrow n+8⋮n^2+1\)

\(\Rightarrow\left(n+8\right)\left(n-8\right)⋮n^2+1\Rightarrow n^2-64⋮n^2+1\)

\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)

\(\Rightarrow n^2+1\inƯ\left(65\right)=\left\{\pm1;\pm5;\pm13;\pm65\right\}\)

\(n^2+1\ge1\Rightarrow n^2+1\in\left\{1;5;13;65\right\}\)

\(\Rightarrow n\in\left\{0;\pm2;\sqrt{12};\pm8\right\}\)

15 tháng 1 2019

Câu c ý tưởng thì hay đó, mỗi tội thiếu bước thử lại

11 tháng 10 2020

Ta có: \(\frac{2n^3+n^2+7n+1}{2n-1}=\frac{\left(2n-1\right)\left(n^2+n+4\right)+5}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)

Để 2n+ n+ 7n + 1 chia hết cho 2n - 1 thì \(\frac{5}{2n-1}\in\Rightarrow\Leftarrow5⋮2n-1\Rightarrow2n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng giá trị sau:

\(2n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(1\)\(0\)\(3\)\(-2\)

Vậy \(n\in\left\{1;0;3;-2\right\}\)thì 2n+ n+ 7n + 1 chia hết cho 2n - 1

11 tháng 10 2020

\(2n^3+n^2+7n+1\)

\(=\left(2n-1\right)\left(n^2+n+4\right)+5\)

\(\Rightarrow\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)

Để vế trái nguyên thì \(2n-1\)là Ư(5).

\(\Rightarrow n=-2,0,1,3\)