Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì mẫu số lũy thừa k của cơ số lớn hơn 1000 tăng nhanh hơn tử số với lũy thừa 2 (luôn dương) của k khi k tăng.
Vì k là số nguyên (âm, dương và số 0), nên khi số nguyên k nhỏ nhất, thì phân số trên đạt giá trị lớn nhất. Tức là k= \(-\infty\)
TQ: Phân số a/b nhỏ nhất mak khi nhân x/y;z/t;m/n đc số nguyên thì :
a là BCNN ( y,n,t )
b là ƯCLN ( x,z,m )
=> a/b= 105/4
Chúc bạn học giỏi
19A=192010+19/192010+1=192010+1+18/192010+1=192010+1/192010+1+18/192010+1=1+18/192010
19B=192009+19/192009+1=192009+1+18/192009+1=192009+1/192009+1+18/192009+1=1+18/192009
Vậy A<B
Xin lỗi mình chịu câu trên
Ta có A=\(\frac{19^{2009}+1}{19^{2010}+1}\) Ta có:B=\(\frac{19^{2008}+1}{19^{2009}+1}\)
19B=\(\frac{19^{2009}+19}{19^{2009}+1}\)
19A=\(\frac{19^{2010}+19}{19^{2010}+1}\) 19B=\(\frac{19^{2009}+1+18}{19^{2009}+1}\)
19A=\(\frac{19^{2010}+1+18}{19^{2010}+1}\) 19B=\(1+\frac{18}{19^{2009}+1}\)
19A=\(1+\frac{18}{19^{2010}+1}\)
Vì \(\frac{18}{19^{2010}+1}< \frac{18}{19^{2009}+1}\)nên \(19A< 19B\)
\(\Leftrightarrow A< B\)
Vậy\(A< B\)
Ta có (ak+bk)\(⋮\)(a+b) với k = 2t+1, t\(\in\)N, a2+b2\(\ne\)0
A=1k+2k+...+(n-1)k+nk ; 2B=2(1+2+...+n)=n(n+1)
2A=[(1k+nk)+(2k+(n-1)k+... ]\(⋮\)(n+1)
2A=2[(1k+(n-1)k)+(2k+(n-2)k)+...+nk ] \(⋮\)n
Vậy A \(⋮\)B