\(2007^{2007}\)cho 11?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

Theo định lý Fermat nhỏ, với $(2007,11)=1$ ta có:
\(2007^{10}\equiv 1\pmod {11}\)

\(\Rightarrow 2007^{2007}=(2007^{10})^{200}.2007^7\equiv 1^{200}.2007^7\equiv 2007^7\pmod {11}(1)\)

\(2007\equiv 5\pmod {11}\)

\(\Rightarrow 2007^7\equiv 5^7=5^3.5^3.5=125.125.5\equiv 4.4.5\equiv 3\pmod {11}(2)\)

Từ \((1);(2)\Rightarrow 2007^{2007}\equiv 3\pmod {11}\) hay $007^{2007}$ chia $11$ dư $3$

12 tháng 7 2017

1. Bài 1 e bấm máy

Nhấn Shift + log sẽ xuất hiện tổng sigma

e nhập như sau:

x = 1

cái ô trống ở trên nhập 2007

còn cái biểu thức trong dấu ngoặc đơn là  \(\left(\frac{1}{\left(X+1\right)\sqrt{X}+X\sqrt{X+1}}\right)\)

Rồi bấm "=" 

Chờ máy hiện kq sẽ hơi lâu :)

kq: 0.9776839079

12 tháng 7 2017

2. 

-B1: Tìm số dư của  \(2^{2009}\)  cho 11 đc kq là 6

- B2: Tìm số dư của  \(3^6\)  cho 11 đc kq là 3

Vậy  \(3^{2^{2009}}\)  chia 11 dư 3

3. Gọi độ dài đường chéo ngắn hơn là x, thì độ dài đường chéo kia là 3/2 x

Cạnh hình thoi: 37 : 4 = 9.25 (cm)

Theo định lý Pytago

\(x^2+\left(\frac{3}{2}x\right)^2=9.25^2\)

Vào Shift Solve giải ra tìm đc  \(x\approx5.130976815\)

Vậy  \(S=\frac{1}{2}x.\frac{3}{2}x=\frac{4107}{208}\approx19.7451923076\left(cm^2\right)\)

6 tháng 11 2016

gọi g(x) là thương phép chia 

số dư có dạng ax+b

đặt x^99 + x^55 + x^11 + 7 = f(x)

ta có

f(x) = g(x) . (x^2 - 1) +ax+b

x = 1

=> f(1) = g(1) . (1^2 - 1) + a+b

 11 = a+b

x=-1

=> f(-1) = g(-1) . (-1^2 - 1) -a+b

=> 3 = -a+b

ta có

a+b = 11

b-a = 3

=> 2a = 8

=> a=4

b=7

thương phép chia là 4a+7

NV
20 tháng 9 2019

Do \(Q\left(x\right)\) bậc 3 nên đa thức dư tối đa là bậc 2

Gọi đa thức thương là \(T\left(x\right)\) và đa thức dư là \(R\left(x\right)=ax^2+bx+c\)

\(\Rightarrow P\left(x\right)=T\left(x\right).\left(x^3-x\right)+ax^2+bx+c\)

Thay \(x=0\Rightarrow1=c\)

Thay \(x=1\Rightarrow6=a+b+c\Rightarrow a+b=6-c=5\)

Thay \(x=-1\Rightarrow-4=a-b+c\Rightarrow a-b=-4-c=-5\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\a-b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)

Vậy đa thức dư là \(R\left(x\right)=5x+1\)

18 tháng 5 2020

\(x^2-x-1=0\)

Ta có \(\Delta=b^2-4ac=\left(-1\right)^2-4.1.\left(-1\right)=1+4=5>0\)\(\sqrt{\Delta}=\sqrt{5}\)

Phuông trình có 2 nghiệm phân biệt 

\(a=x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{5}}{2}\)

\(b=x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{1-\sqrt{5}}{2}\)

Ta có \(a^{2007}+b^{2007}+a^{2009}+b^{2009}\)

\(\Leftrightarrow a^{2007}.\left(1+a^2\right)+b^{2007}.\left(1+b^2\right)\)

\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(1+\left(\frac{1+\sqrt{5}}{2}\right)^2\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(1+\left(\frac{1-\sqrt{5}}{2}\right)^2\right)\)

\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(1+\frac{3+\sqrt{5}}{2}\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(1+\frac{3-\sqrt{5}}{2}\right)\)

\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(\frac{5+\sqrt{5}}{2}\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(\frac{5-\sqrt{5}}{2}\right)\)

\(\Leftrightarrow\sqrt{5}.\left(\frac{1+\sqrt{5}}{2}\right)^{2008}+\sqrt{5}.\left(\frac{1-\sqrt{5}}{2}\right)^{2008}\)

\(\Leftrightarrow\sqrt{5}.\left[\left(\frac{1+\sqrt{5}}{2}\right)^{2008}+\left(\frac{1-\sqrt{5}}{2}\right)^{2008}\right]⋮5\)  (ĐPCM)

Nhớ k cho mình nhé