K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2016

số dư câu a là 9

câu b là 4

tick nha

21 tháng 1 2016

số dư câu a là 9

B là 4

mình nghĩ thế

3 tháng 12 2018

a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014

A = ( 2014 + 20142 ) + ( 2014+ 20144 ) + ..... + ( 20142013 + 20142014 )

A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )

A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015

A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015

b) Ta có 6 chia hết cho n - 1

=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }

Nếu n - 1 = 1 => n = 2 (tm)

Nếu n - 1 = 2 => n = 3 (tm)

Nếu n - 1 = 3 => n = 4 (tm)

Nếu n - 1 = 6 => n = 7 (tm)

Vậy n thuộc { 2 ; 3 ; 4 ; 7 }

Mk ko chắc là đúng

hok tốt

19 tháng 12 2018

bài này có trong đề thi cuối học kì 1 ko ???????

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

8 tháng 12 2018

a) Ta có:

a=17x+11=23y+18=11z+3 (x,y,z E N)

=> a+74=17x+85=23y+92=11z+77

=> a+74 chia hết cho 17;23;11

Vì 3 số trên ntcn nên: a+74 chia hết cho 17.23.11=4301

Đặt: a+74=4301k (k E N*)

=> a=4301(k-1)+4227

nên: số dư của a khi chia cho 4301 là: 4227

b) 11+25+39+413+..........+505201

Ta dễ thấy rằng: 1;5;9;...vv là các số có dạng: 4k+1 (k E N)

=> 11+25+39+............+505201=(...1)+(...2)+(....3)+(...4)+........+(...4)+(...5)

Tổng tận cùng của 10 stn liên tiếp là:

1+2+3+4+5+6+7+8+9+0=45 có tc=5

Ta có 50 cặp nv nên sẽ có tc=0

5 số cuối là: (...1);(...2);(...3);(..4);(...5)

tc=1+2+3+4+5=15 có tc=5

Vậy tổng trên có tc=0+5=5

A có tc=5

9 tháng 12 2018

thank you nha

26 tháng 3 2016

số dư

3^2020+4^2020

chọn ý a

11 ko biết đúng ko anh thể nhỉ

ok

26 tháng 11 2019

Dễ thấy mọi số mũ đều có dạng 4k+1

\(A=1^1+2^5+3^9+4^{13}+.....+504^{2013}+505^{2017}\)

\(=\overline{.....1}+\overline{....2}+\overline{.....3}+.....+\overline{......5}\)

Chia tổng A thành 50 nhóm và thừa 5 số hạng cuối

Chữ số tận cùng của 50 là 

50=10*5 có chứa thừa số 10

nên cstc của 50 nhóm là 0

cstc của 5 số hạng cuối là 5

=> A có tận cùng là 5

Nguồn:Shitbo

26 tháng 11 2019

a khi chia cho 17 dư 11 suy ra a có dạng \(17p+11\)

\(\Rightarrow a+74=17p+85⋮17\)

a khi chia cho 23 dư 18 suy ra a có dạng 

\(23q+18\Rightarrow a+74=23q+92⋮23\)

a khi chia cho 11 dư 3 suy ra a có dạng 

\(11r+3\Rightarrow a+74=11r+77⋮11\)

\(\Rightarrow a+74\in BC\left(17;23;11\right)\)

\(\Rightarrow a+74=4301k\)

\(\Rightarrow a+74-4301=4301k-4301\)

\(\Rightarrow a-4227=4301\left(k-1\right)\Rightarrow a=4301\left(k-1\right)+4227\) dư 4327

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:

$A=9^0+(9+9^2)+(9^3+9^4)+....+(9^{2013}+9^{2014})$

$=1+9(1+9)+9^3(1+9)+....+9^{2013}(1+9)$
$=1+(1+9)(9+9^3+....+9^{2013})$

$=1+10(9+9^3+....+9^{2013})$

$\Rightarrow A$ chia $10$ dư $1$.

15 tháng 6 2015

nếu  8260:9 dư 7 

neu 8260:3 du 1

1725:9 du 6

1725:3 du 0

2014 :9 du 7