Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a2 + 9b2 - 20a + 6b + 26 = 0 <=> ( 2a - 5 )2 + ( 3b + 1 )2 = 0 <=> a = 5/2 ; b = -1/3
5a2 + b2 - 2a + 4ab + 1 = 0 <=> ( 2a + b )2 + ( a - 1 )2 = 0 <=> a = 1 ; b = -2
1) Ta có 4a2 + 9b2 - 20a + 6b + 26 = 0
<=> (4a2 - 20a + 25) + (9b2 + 6b + 1) = 0
<=> (2a - 5)2 + (3b + 1)2 = 0
<=> \(\hept{\begin{cases}2a-5=0\\3b+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=-\frac{1}{3}\end{cases}}\)
Vậy a = 5/2 ; b = -1/3
2) Ta có 5a2 + b2 - 2a + 4ab + 1 = 0
<=> (4a2 + 4ab + b2) + (a2 - 2a + 1) = 0
<=> (2a + b)2 + (a - 1)2 = 0
<=> \(\hept{\begin{cases}2a+b=0\\a-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-2\\a=1\end{cases}}\)
Vậy b = -2 ; a = 1
Lời giải:
1) Ta thấy:
\(a^2+b^2-2ab=(a-b)^2\geq 0\)\(\Rightarrow a^2+b^2\geq 2ab\)
Hoàn toàn tương tự:
\(b^2+c^2\geq 2bc; c^2+a^2\geq 2ac\)
Cộng theo vế các BĐT trên:
\(\Rightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)
\(\Rightarrow 3(a^2+b^2+c^2)\geq a^2+b^2+c^2+2(ab+bc+ac)\)
\(\Rightarrow 3S\geq (a+b+c)^2=9\)
\(\Rightarrow S\geq 3\)
Vậy \(S_{\min}=3\Leftrightarrow a=b=c=1\)
2)
Áp dụng BĐT Cô-si cho các số dương:
\(4a^2+4\geq 2\sqrt{4a^2.4}=8a\)
\(6b^2+\frac{8}{3}\geq 2\sqrt{6b^2.\frac{8}{3}}=8b\)
\(3c^2+\frac{16}{3}\geq 2\sqrt{3c^2.\frac{16}{3}}=8c\)
Cộng theo vế:
\(\Rightarrow 4a^2+6b^2+3c^2+12\geq 8(a+b+c)\)
\(\Rightarrow P+12\geq 8.3=24\Rightarrow P\geq 12\)
Vậy \(P_{\min}=12\Leftrightarrow a=1; b=\frac{2}{3}; c=\frac{4}{3}\)
a)\(\left(a^3-b^3\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
b) \(\left(8a^3-27b^3\right)-2a\left(4a^2-9b^2\right)\)
\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2\right)-2a\left(2a-3b\right)\left(2a+3b\right)\)
\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2-4a^2-6ab\right)\)
\(=\left(2a-3b\right)\cdot9b^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+a^2-2ab+b^2\)
= ...........
a) Ta có: \(a^2+b^2+4a-6b+13\)
\(=\left(a^2+4a+4\right)+\left(b^2-6b+9\right)\)
\(=\left(a+2\right)^2+\left(b-3\right)^2\ge0\left(\forall x,y\right)\)
=> đpcm
b) Ta có:
\(A=a^2+b^2-2a+10b-5\)
\(A=\left(a^2-2a+1\right)+\left(b^2+10b+25\right)-31\)
\(A=\left(a-1\right)^2+\left(b+5\right)^2-31\ge-31\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+5\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-5\end{cases}}\)
Vậy \(Min_A=-31\Leftrightarrow\hept{\begin{cases}a=1\\b=-5\end{cases}}\)
a) Ta có : a2 + b2 + 4a - 6b + 13 = (a2 + 4a + 4) + (b2 - 6b + 9) = (a + 2)2 + (b - 3)2 \(\ge\)0\(\forall\)x;y
b) Ta có A = a2 + b2 - 2a + 10b - 5 = (a2 - 2a + 1) + (b2 + 10b + 25) - 31 = (a - 1)2 + (b + 5)2 - 31 \(\ge\)-31
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a-1=0\\b+5=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-5\end{cases}}\)
Vậy Min A = -31 <=> a = 1 ; b = -5
c: \(5\left(a+b\right)+x\left(a+b\right)\)
=(a+b)(x+5)
d: \(\left(a-b\right)^2-\left(b-a\right)\)
\(=\left(a-b\right)^2+\left(a-b\right)\)
=(a-b)(a-b+1)
e: \(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)
\(=2y\cdot6x\cdot\left(2x+1\right)=12xy\left(2x+1\right)\)
a)25a2-49b4
=(5a)2-(7b2)2
=(5a-7b2)(5a+7b2)
b)100a2-9b4
=(10a)2-(3b2)2
=(10a-3b2)(10a+3b2)
c)a4-4b2
=(a2)2-(2b)2
=(a2-2b)(a2+2b)
a) 25a2 - 49b2
= (5a + 7b)(5a - 7b)
b) 100a2 - 9b2
= (10a - 3b)(10a + 3b)
c) a4 - 4b2
= (a2 - 2b)(a2 + 2b)
d) \(\dfrac{4}{9}a^{4^{ }}-\dfrac{25}{4}\)
= \(\left(\dfrac{2}{3}a^2+\dfrac{5}{2}\right)\left(\dfrac{2}{3}a^2-\dfrac{5}{2}\right)\)
e) \(\dfrac{1}{4}a^2-b^2\)
=\(\left(\dfrac{1}{2}a-b\right)\left(\dfrac{1}{2}a+b\right)\)
f) \(\dfrac{1}{4}a^2-\dfrac{1}{9}b^2\)
= \(\left(\dfrac{1}{2}a-\dfrac{1}{3}b\right)\left(\dfrac{1}{2}a+\dfrac{1}{3}b\right)\)
g) \(\dfrac{1}{25}-36x^2\)
= \(\left(\dfrac{1}{5}-6x\right)\left(\dfrac{1}{5}+6x\right)\)
h) \(25a^2-\dfrac{1}{4}b^2\)
= \(\left(5a-\dfrac{1}{2}b\right)\left(5a+\dfrac{1}{2}b\right)\)
Lần sau tách từng câu nha, nhìn ngán quá!Câu nào dễ làm trước!
1.Sửa đề: \(A=27a^3-8=\left(3a\right)^3-2^3=\left(3a-2\right)\left[\left(3a\right)^2+2.\left(3a\right)+2^2\right]=\left(3a-2\right)\left(9a^2+6a+4\right)\)
3/ \(C=a^3-b^3+\left(a-b\right)^2=\left(a-b\right)\left(a^2+b^2+ab\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+b^2+ab+a-b\right)\)
4/ \(D=\left(a^3+b^3\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)^2\)
\(=\left(a+b\right)\left(a^2-ab+b^2+a+b\right)\)
5 \(E=\left(a^2+1\right)^2-4a^2=\left(a^2+1\right)-\left(2a\right)^2\)
\(=\left(a^2-2a+1\right)\left(a^2+2a+1\right)\)
\(=\left[\left(a-1\right)\left(a+1\right)\right]^2=\left(a^2-1\right)^2\)
6/ \(F=\left(x^2+4\right)^2-16x^2=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left[\left(x-2\right)\left(x+2\right)\right]^2=\left(x^2-4\right)^2\)
7) \(G=\left(a^2+2ab+b^2\right)-c^2=\left(a+b\right)^2-c^2=\left(a+b+c\right)\left(a+b-c\right)\)
8/\(I=1-\left(x^2-2xy+y^2\right)=1-\left(x-y\right)^2=\left(1-x+y\right)\left(1+x-y\right)\)
9/ \(U=2x^2+2y^2-4xy=2\left(x^2+y^2-2xy\right)=2\left(x-y\right)^2\)
2,
B = 8a3 - 27b3 - 2a(4a2 - 9b2)
= (2a - 3b)(4a2 + 6ab + 9b2) - 2a(2a - 3b)(2a + 3b)
= (2a - 3b) ( 4a2 + 6ab + 9b2 - 2a(2a + 3b))
= (2a - 3b) (4a2 + 6ab + 9b2 - 4a2 - 6ab)
= 9b2(2a - 3b)
4a2+9b2+16c2=4a+6b+8c+3 <=>4a2-4a+1+9b2-6b+1+16c2-8c+1=6 <=> (2a-1)2+(3b-1)2+(4c-1)2=6. hướng dẫn đến đây nhe bạn