Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÓ:P=10n+81/5n+3 = 2(5n+3)+75/5n+3 = 2 + (75/5n+3)
P tối gản khi 75/5n+3 tối giản
Mà 75 chia hết cho 2 số nguyên tố 3 và 5.
Mà 5n+3 không chia hết cho 5 nên P tối giản khi 5n+3 không chia hết cho 7.
Xét:5n+3 chia hết cho 7
=>5n+3+7 chia hết cho 7
=>5n+10 chia hết cho 7
=>5(n+2) chia hết cho 7
=> n+2 chia hết cho 7 (vì (5,7)=1)
=>n+2= 7k (k thuộc N)
=> n=7k-2
hay n=7k+5
Mà 100<=n<=999
=>100<=7k+5<=999
=>95<=7k<=994
=>14<=k<=142
=>k thuộc {14 ;15;16;...;142}
=>n thuộc {103;110;117;...;999}
=>có 129 số n thì P rút gọn được
=>Có:900-129=771 số n thì P tối giản
Vậy có 771 số n có 3 chữ số để P tối giản
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
b: Để A là số nguyên thì 5n-9 chia hết cho 2n+4
=>10n-18 chia hét cho 2n+4
=>10n+20-38 chia hết cho 2n+4
=>\(2n+4\in\left\{1;-1;2;-2;19;-19;38;-38\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;\dfrac{15}{2};-\dfrac{23}{2};17;-21\right\}\)
Vì n là số nguyên nên 2n + 7 và 5n + 2 là số nguyên.
Gọi \(d\inƯC\left(2n+7,5n+2\right)\)
\(\Rightarrow2n+7⋮d\)và \(5n+2⋮d\)
\(\Rightarrow5\left(2n+7\right)-2\left(5n+2\right)⋮d\Rightarrow10n+35-10n-4⋮d\)
\(\Rightarrow31⋮d\Rightarrow d\in\left\{1;-1;31;-31\right\}\)
Ta có \(2n+7⋮31\Leftrightarrow2n+7+31⋮31\Leftrightarrow2n+38⋮31\Leftrightarrow2\left(n+19\right)⋮31\)
Vì \(\left(2,31\right)=1\Rightarrow n+19⋮31\Leftrightarrow n+19=31k\Leftrightarrow n=31k-19\)
+) Nếu \(n=31k-19\)
\(\Rightarrow2n+7=2\left(31k-19\right)+7=62k-38+7=62k-31\)
\(=31\left(2k-1\right)⋮31\)mà \(2n+7>2\Rightarrow2n+7\)là hợp số ( loại )
+) Nếu \(n\ne31k-19\)thì \(2n+7\)ko chia hết cho 31.
\(\RightarrowƯC\left(2n+7,5n+2\right)=\left\{1;-1\right\}\)
\(\Rightarrow\frac{2n+7}{5n+2}\)là PSTG .
Vậy n\\(n\ne31k-19\)thì \(\frac{2n+7}{5n+2}\)là PSTG \(\forall\)số nguyên n.
bạn giải ra được không , tớ cần lời giải chứ đáp án thì tớ biết
ta có
\(\frac{2n+7}{5n+2}=\frac{2n+2+5}{2n+2+3n}=2+\frac{5}{5n+2}\)
để \(\frac{5}{5n+2}\)là số nguyên thì 5\(⋮\)(5n+2) và n thuộc N
=> 5n+2 \(\in\)Ư(5)={-1;-5;1;5}
* 5n+2=(-1) => n=(-0,6) loại
* 5n+2=(-5) => n=(-0,4) loại
* 5n+2=1 => n=(-0,2) loại
* 5n+2=5 => n=0,6 loại
vậy không có giá trị n nào thỏa mãn
tìm j` vậy? ko hỏi cho rõ ra thj` ai mà hỉu đc
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N