Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha
a) P(x) = 5x3 - 3x + 7 - x
= 5x3 - 4x + 7
Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1
= -x3 + x2 + x + 1
b) M(x) = P(x) + Q(x)
= ( 5x3 - 4x + 7 ) + ( -x3 + x2 + x + 1 )
= 5x3 - 4x + 7 -x3 + x2 + x + 1
= 4x3 + x2 - 3x + 8
N(x) = P(x) - Q(x)
= ( 5x3 - 4x + 7 ) - ( -x3 + x2 + x + 1 )
= 5x3 - 4x + 7 + x3 - x2 - x - 1
= 6x3 - x2 - 5x + 6
c) M(x) = 4x3 + x2 - 3x + 8
M(x) = 0 <=> 4x3 + x2 - 3x + 8 = 0
( Bạn xem lại đề nhé chứ lớp 7 chưa học tìm nghiệm đa thức bậc 3 đâu )
a,Ta có:
\(f\left(-1\right)=0\)
\(\Leftrightarrow m.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1=0\)
\(\Leftrightarrow m.\left(-1\right)+1-1+1=0\)
\(\Leftrightarrow-m+1=0\)
\(\Leftrightarrow-m=-1\)
\(\Leftrightarrow m=1\)
Vậy \(m=1\)thì đa thức có nghiệm là -1
b,Ta có:
\(g\left(1\right)=0\)
\(\Leftrightarrow1^4+m^2.1^3+m.1^2+m.1-1=0\)
\(\Leftrightarrow1+m^2+m+m-1=0\)
\(\Leftrightarrow m^2+2m=0\)
\(\Leftrightarrow m.\left(m+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=0\\m=-2\end{cases}}\)
Vậy \(m=\left\{0,-2\right\}\)thì đa thức có nghiệm là 1
c, Ta có:
\(h\left(-3\right)=0\)
\(\Leftrightarrow\left(-3\right)^3-2.\left(-3\right)^2+m=0\)
\(\Leftrightarrow-27-2.9+m=0\)
\(\Leftrightarrow-27-18+m=0\)
\(\Leftrightarrow-45+m=0\)
\(\Leftrightarrow m=45\)
Vậy \(m=45\)thì đa thức có nghiệm là -3
a) f(x) = m.x3 + x2 + x + 1
f(x) có nghiệm x = -1
=> f(-1) = m(-1)3 + (-1)2 + (-1) + 1 = 0
=> -m + 1 - 1 + 1 = 0
=> -m + 1 = 0
=> -m = -1
=> m = 1
Vậy với m = 1 , f(x) có nghiệm x = -1
b) g(x) = x4 + m2.x3 + m.x2 + m.x - 1
g(x) có nghiệm x = 1
=> g(1) = 14 + m2.13 + m.12 + m.1 - 1 = 0
=> 1 + m2 + m + m - 1 = 0
=> m2 + 2m = 0
=> m( m + 2 ) = 0
=> m = 0 hoặc m + 2 = 0
=> m = 0 hoặc m = -2
Vậy với m = 0 hoặc m = -2 , g(x) có nghiệm x = 1
c) h(x) = x3 - 2x2 + m
h(x) có nghiệm x = -3
=> h(-3) = (-3)3 - 2(-3)2 + m = 0
=> -27 - 18 + m = 0
=> -45 + m = 0
=> m = 45
Vậy với m = 45 , h(x) có nghiệm x = -3
giải có vẻ là lạ ở cái suy ra đầu tiên nếu bạn rút phải là
\(x\left(-4x^2-1-1+\frac{1}{x}\right)\) mới đúng
Hướng dẫn 1 phần : ko biết thì hỏi
a) áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=15\)
\(\Rightarrow\hept{\begin{cases}x=15.4=60\\y=15.5=75\end{cases}}\)
Vạy \(\hept{\begin{cases}x=60\\y=75\end{cases}}\)
Giải:
a) Để đa thức có nghiệm
\(\Leftrightarrow x^2-64=0\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x=\pm8\)
Vậy ...
d) Để đa thức có nghiệm
\(\Leftrightarrow x^2-81=0\)
\(\Leftrightarrow x^2=81\)
\(\Leftrightarrow x=\pm9\)
Vậy ...
h) Để đa thức có nghiệm
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow\left(x-6\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy ...
Các câu còn lại làm tương tự.
a, x\(^2\) - 64 = 0
\(\Rightarrow\) x\(^2\) = 0 + 64
= 64
= 8\(^2\)
\(\Rightarrow\) x = 8
Vậy nghiệm của \(x^2-64\) là 8
d, \(x^2-81\) = 0
\(\Rightarrow\) x\(^2\) = 81
= 9\(^2\)
\(\Rightarrow\) x = 9
vậy nghiệm của \(x^2-81\) là 9
1. Ta có :
f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0
f(x) = m - 1 - 3m + 2 = -2m + 1 = 0
\(\Rightarrow m=\frac{1}{2}\)
2.
a) M(x) = -2x2 + 5x = 0
\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)
b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0
N(x) = ( x + 2 ) . ( x - 1/2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014
vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm
\(M\left(x\right)=3\left(x^2-4\right)+x^4+12\)
\(=3x^2-12+x^4+12=x^4+3x^2=x^2\left(x^2+3\right)\)
Đặt M(x)=0
=>\(x^2\left(x^2+3\right)=0\)
=>\(x^2=0\)
=>x=0