Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)
= \(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)
=\(4x+\frac{16}{3}\)
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
a) \(M\left(x\right)=2x-\frac{1}{2}=0\Leftrightarrow2x=0+\frac{1}{2}=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\div2=\frac{1}{4}\)
Vậy nghiệm của M( x ) là \(\frac{1}{4}\)
b) \(N\left(x\right)=\left(x+5\right)\left(4x^2-1\right)=0\) Chia 2 TH
TH1 : \(x+5=0\Leftrightarrow x=0-5=-5\)
TH2 : \(4x^2-1=0\Leftrightarrow4x^2=1\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
Vậy N( x ) có 2 nghiệm là \(x=-5;x=\frac{1}{2}\)
c) \(P\left(x\right)=9x^3-25x=0\Leftrightarrow x\left(9x^2-25\right)=0\) Chia 2 TH
TH1 : \(x=0\). TH2 : \(9x^2-25=0\Leftrightarrow9x^2=0+25=25\)
\(\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{5}{3}\). Vậy P( x ) có 2 nghiệm là \(x=0;x=\frac{5}{3}\)
a, Cho P(x) = 0
\(\Rightarrow\) 2/5x+1/3=0
\(\Rightarrow\) 2/5x= -1/3
\(\Rightarrow\)x= -5/6
b,Cho Q(x)=0
\(\Rightarrow\)(x-2)2017 - (x-2) = 0
\(\Rightarrow\)(x - 2) \(\times\)\([\left(x-2\right)^{2016}-1]\)= 0
\(\Rightarrow\)x - 2 = 0 hoặc (x - 2 )2016 -1 =0
\(\Rightarrow\)x = 2 hoặc x = 3 ; x = 1
a) \(7x^2-5x-2\) ( a = 7 ; b = -5 ; c = -2 )
Ta có : 7 + (-5) + (-2) = 0 => đa thức p(x) có 1 nghiệm là x = 1
b) \(\frac{1}{3}x^2+\frac{2}{5}x-\frac{11}{15}\) ( a = \(\frac{1}{3}\) ; = \(\frac{2}{5}\) ; c = \(\frac{-11}{15}\) )
Ta có : \(\frac{1}{3}+\frac{2}{5}-\frac{11}{15}\) = 0 => đa thức Q(x) có 1 nghiệm là x = -1
\(\left(\frac{1}{2}\right)^5\times x=\left(\frac{1}{2}\right)^7\)
\(x=\left(\frac{1}{2}\right)^7\div\left(\frac{1}{2}\right)^5\)
\(x=\left(\frac{1}{2}\right)^{7-5}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\) .
\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{9}{21}\right)^2\)
\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{3}{7}\right)^4\)
\(x=\left(\frac{3}{7}\right)^4\div\left(\frac{3}{7}\right)^2\)
\(x=\left(\frac{3}{7}\right)^{4-2}=\left(\frac{3}{7}\right)^2=\frac{9}{49}\)
\(2^x=2\Rightarrow x=1\)
\(3^x=3^4\Rightarrow x=4\)
\(7^x=7^7\Rightarrow x=7\)
\(\left(-3\right)^x=\left(-3\right)^5\Rightarrow x=5\)
\(\left(-5\right)^x=\left(-5\right)^4\Rightarrow x=4\)
\(2^x=4\Leftrightarrow2^x=2^2\Rightarrow x=2\)
\(2^x=8\Leftrightarrow2^x=2^3\Rightarrow x=3\)
\(2^x=16\Leftrightarrow2^x=2^4\Rightarrow x=4\)
\(3^{x+1}=3^2\Leftrightarrow x+1=2\Leftrightarrow x=2-1\Rightarrow x=1\)
\(5^{x-1}=5\Leftrightarrow x-1=1\Leftrightarrow x=1+1\Rightarrow x=2\)
\(6^{x+4}=6^{10}\Leftrightarrow x+4=10\Leftrightarrow x=10-4\Rightarrow x=6\)
\(5^{2x-7}=5^{11}\Leftrightarrow2x-7=11\Leftrightarrow2x=11+7\Leftrightarrow2x=18\Leftrightarrow x=18\div2\Rightarrow x=9\)
\(\left(-2\right)^{4x+2}=64\)
\(2^{-4x+2}=2^6\Leftrightarrow-4x+2=6\Leftrightarrow-4x=6-2\Leftrightarrow-4x=4\Leftrightarrow x=4\div\left(-4\right)\Rightarrow x=-1\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\Rightarrow x=5\)
\(\left(\frac{5}{6}\right)^{2x}=\left(\frac{5}{6}\right)^5\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
\(\left(\frac{3}{4}\right)^{2x-1}=\left(\frac{3}{4}\right)^{5x-4}\Rightarrow2x-1=5x-4\)
\(2x-5x=-4+1\)
\(-3x=-3\Rightarrow x=1\)
\(\left(\frac{-1}{10}\right)^x=\frac{1}{100}\)
\(\left(\frac{1}{10}\right)^{-x}=\left(\frac{1}{10}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)
\(\left(\frac{-3}{2}\right)^x=\frac{9}{4}\)
\(\left(\frac{3}{2}\right)^{-x}=\left(\frac{3}{2}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)
\(\left(\frac{-3}{5}\right)^{2x}=\frac{9}{25}\)
\(\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^2\Rightarrow-2x=2\Rightarrow x=-1\)
\(\left(\frac{-2}{3}\right)^x=\frac{-8}{27}\)
\(\left(\frac{-2}{3}\right)^x=\left(\frac{-2}{3}\right)^3\Rightarrow x=3\).
hehe. đánh tới què tay, hoa mắt lun r nekkk!!
\(a)\) Ta có :
\(x\left(x-\frac{1}{2}\right)+2\left(x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\left(x+2\right)\left(x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}}\)
Vậy nghiệm của đa thức \(M\left(x\right)=x\left(x-\frac{1}{2}\right)+2\left(x-\frac{1}{2}\right)\) là \(x=-2\) và \(x=\frac{1}{2}\)
\(b)\) Ta có :
\(x^2+2x+2015=x^2+2x+1+2014=\left(x+1\right)^2+2014\ge2014>0\)
Vậy đa thức \(N\left(x\right)=x^2+2x+2015\) không có nghiệm hay vô nghiệm
Chúc bạn học tốt ~