K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2021

a) A=(x-4)2+ |y-1|-6

Ta thấy:

(x-4)² ≥ 0 ∀ x

|y-1| ≥ 0 ∀ y

⇒ (x-4)2+ |y-1|  ≥ 0 ∀ x, y

⇒ (x-4)2+ |y-1|-6  ≥ -6 ∀ x, y

⇒ A ≥ -6 ∀ x, y

Dấu '=' xảy ra khi: \(\left[{}\begin{matrix}x-4=0\\y-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)

Vậy Min A = -6 tại x=4, y = 1

b) B= (x2-1)4+2.|2y-4|-3

Ta thấy:

(x2-1)4 ≥ 0 ∀ x

|2y-4| ≥ 0 ∀ y

⇒ 2|2y-4| ≥ 0 ∀ y

⇒ (x2-1)4+2.|2y-4| ≥ 0 ∀ x, y

⇒ (x2-1)4+2.|2y-4|-3 ≥ -3 ∀ x, y

⇒B ≥ -3 ∀ x, yDấu '=' xảy ra ra khi: \(\left[{}\begin{matrix}x^2-1=0\\2y-4=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x^2=1\\2y=4\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\pm1\\y=2\end{matrix}\right.\)

Vậy Min B = -3 tại x=\(\pm\)1, y = 2

7 tháng 7 2021

thank you!!!hihi

20 tháng 8 2017

\(A=\left|x\right|+\left|8-x\right|\)

Áp dụng bđt:

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(A\ge\left|x+8-x\right|\)

\(A\ge8\)

Dấu "=" xảy ra khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\8-x\ge0\Rightarrow x\le8\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\8-x< 0\Rightarrow x>8\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow0\le x\le8\)

11 tháng 9 2019

B1: Đk: 5x ≥ 0 => x ≥ 0

Vì |x + 1| ≥ 0 => |x + 1| = x + 1

     |x + 2| ≥ 0 => |x + 2| = x + 2

     |x + 3| ≥ 0 => |x + 3| = x + 3

     |x + 4| ≥ 0 => |x + 4| = x + 4

=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

 => x + 1 + x + 2 + x + 3 + x + 4 = 5x

=> 4x + 10 = 5x

=> x = 10

B2: Ta có: |x - 2018| = |2018 - x|

=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018

Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0

Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)

Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)

Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018

B3:

a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0

=> |x + 1| + |2y - 4| ≥ 0

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy...

b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0

 => |x - y + 1| + (y - 3)2 ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy...

c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0  ; |2x - 1| ≥ 0 

=> |x + y| + |x - z| + |2x - 1| ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)

22 tháng 12 2019

coi lại mới thấy trình bày ngờ-u :)) 

B1: Đk: 5x ≥ 0 => x ≥ 0

=> x + 1 > 0 => |x + 1| = x + 1

=> x + 2 > 0 => |x + 2| = x + 2 

=> x + 3 > 0 => |x + 3| = x + 3 

=> x + 4 > 0 => |x + 4| = x + 4 

Ta có:  |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

=> .... Làm tiếp như dưới

27 tháng 11 2019

1)Tìm x

a) (x+1)(x-2)<0

=>Có 2TH:

TH1:

x+1<0=>x< -1

x-2>0=>x>2

=>Vô lí 

TH2:

x+1>0=>x> -1

x-2<0=>x<2

=> -1<x<2

Vậy x thuộc {0;1}

b) Tương tự a thôi ạ. 

c) (x-2)(3x+2)

=> Có hai TH:

TH1:

x-2<0=>x<2

3x+2<0=>3x< -2=>x< -2/3

=>x< -2/3

TH2:

x-2>0=>x>2

3x+2>0=>3x> -2=>x> -2/3

=>x>2

Vậy x< -2/3 hoặc x>2

2)Tìm x

x.x=x

<=>x²-x=0

<=>x(x-1)=0

<=>x=0 hoặc x=1

28 tháng 11 2019

Cảm ơn nha Linh