Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: m + 1 = 0 <=> m = -1
Khi đó bpt trở thành: -x - 1 < 0 <=> x > - 1 loại
TH2: m + 1 \(\ne\)0 <=> m\(\ne\)-1
Bất phương trình đúng với mọi số thực x
<=> \(\hept{\begin{cases}m+1< 0\\\Delta< 0\end{cases}}\)
+) Giải: m + 1 < 0 <=> m < -1 (1)
+) Giải: \(\Delta< 0\)<=> \(m^2-4m\left(m+1\right)< 0\)
<=> \(-3m^2-4m< 0\)
<=> m > 0 hoặc m < -4/3 (2)
Từ (1) ; (2) ta có: m < -4/3
\(f\left(x\right)=x^2-2mx+m^2-3m+2\)
\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)
Ta có : \(\left(x-m\right)^2\ge0\)
Để \(f\left(x\right)>0\)
\(\Leftrightarrow-3m+2>0\)
\(\Leftrightarrow m>-\frac{2}{3}\)
Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m>-\frac{2}{3}\)
P/s : K biết có sai chỗ nào k ạ ? Check hộ e :)
Bài vừa rồi mik làm sai nhé :(( Làm lại :
\(f\left(x\right)=x^2-2mx+m^2-3m+2\)
\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)
Ta thấy : \(\left(x-m\right)^2\ge0\)
Để \(f\left(x\right)>0\)
\(\Leftrightarrow-3m+2>0\)
\(\Leftrightarrow2>3m\)
\(\Leftrightarrow m< \frac{2}{3}\)
Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m< \frac{2}{3}\)
1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:
\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow a\ge\frac{1}{2}\)
2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)
3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)
4, Nếu m=0 => f(x)=-2x-1<0 (loại)
Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
\(m^2\left(x-1\right)+x-3< 0\Leftrightarrow\left(m^2+1\right)x-m^2-3< 0\)
Đặt \(f\left(x\right)=\left(m^2+1\right)x-m^2-3\)
\(f\left(x\right)< 0\forall x\in\left[-5;2\right]\Leftrightarrow\hept{\begin{cases}f\left(-5\right)< 0\\f\left(2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-6m^2-8< 0\\m^2-1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6m^2+8>0\\m^2< 1\end{cases}}\Leftrightarrow\left|m\right|< 1\Leftrightarrow-1< m< 1\)
Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m = 0
Với m=2 => pt ⇔ 2x+1<0 => x<\(\dfrac{-1}{2}\)(không thỏa mãn điều kiện).
Với m≠2➩ để bất phương trình luôn đúng bạn xét \(\left\{{}\begin{matrix}\Delta< 0\\m-2< 0\end{matrix}\right.\)
Xong rồi bạn kết luận.
+)Xét 2m2-3m+1=0 => m=1 ,m=1/2
Vs m=1
Thay vào bpt => -2x+1=0
=>x=1/2
Vs m=1/2
Thay vào ptr =>1>0 ( lđ)
+) Xét 2m2-3m+1≠0
Ta có : Δ'=(-(2m-1))2-1.(2m2-3m+1)
= 2m2-m
Để bptr luôn đúng thì
\(\left\{{}\begin{matrix}2m^2-3m+1>0\\2m^2-m< 0\end{matrix}\right.\)
Sau đó giải ra , rồi giao các no vào nhé....
\(f\left(x\right)=x^2-2mx+m^2-3m+2>0\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1>0\left(lđ\right)\\\left(-m\right)^2-m^2+3m-2< 0\end{matrix}\right.\)
\(\Leftrightarrow3m-2< 0\Leftrightarrow m< \frac{2}{3}\)
\(f\left(x\right)=\left(m+1\right)x^2+mx+m\)
TH1: \(m+1=0\Leftrightarrow m=-1\Rightarrow f\left(x\right)>0,\forall x\in R\)
TH2: \(m+1\ne0\Leftrightarrow m\ne-1\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}\Delta=-3m^2-4m< 0\\m+1< 0\end{matrix}\right.\Leftrightarrow m< -\frac{4}{3}\)
Đ/s: \(m< -\frac{4}{3};m=-1\)
f(x)=(m+1)x2+mx+m
TH1: �+1=0⇔�=−1⇒�(�)>0,∀�∈�m+1=0⇔m=−1⇒f(x)>0,∀x∈R
TH2: �+1≠0⇔�≠−1m+1=0⇔m=−1
Yêu cầu bài toán thỏa mãn khi {Δ=−3�2−4�<0�+1<0⇔�<−43{Δ=−3m2−4m<0m+1<0⇔m<−34
Đ/s: �<−43;�=−1m<−34;m=−1