K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

theo hẹ thức viet ta có x1+x2=m+3       x1x2=m/2

A= -(x12+x12)+2x1x2

   =-(( x1+x2)2-2x1x2)+2x1x2

    =-(m+3)2+2x1x2+2x1x2

     =-m2-6m-32+2m

   =m2-4m-32

=m2-4m+4-13

(m-2)2-13

để A nhỏ nhất thì 

(m-2)2> hoặc bằng 0

(m-2)2-13> hoạc bằng -13

vậy .....

   =

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

25 tháng 7 2015

câu 1:

Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)

có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)

\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)

câu 2 mk k bik lm nha 

 

31 tháng 5 2019

Đen-ta phẩy = -(m-1)2 - (m- m - 1) = m2 - 2m + 1 - m2 + m + 1= 2-m

Để pt có 2 nghiệm pb thì đen-ta phẩy \(\ge\) 0 \(\Leftrightarrow\) 2 - m \(\ge\) 0

\(\Leftrightarrow\) m \(\le\) 2

Theo ht Vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x._1x_2=m^2-m-1\end{cases}}\)

Đề cho: P=x12+x22-x1x2+x1+x2 = (x1+x2)2-3x1x2+x1+x2= 4(m2-2m+1)-3(m2-m-1)+2m-2

= 4m2-8m+4-3m2+3m+3+2m-2= m2-3m+5= m2-2m.\(\frac{3}{2}\)\((\frac{3}{2})^2\)-\((\frac{3}{2})^2\) +5

= (m-3/2)2 + 29/4 \(\ge\)29/4. Vậy GTNN của P là 29/4

Dấu "=" xảy ra \(\Leftrightarrow\)m-3/2=0 \(\Leftrightarrow\)m=3/2(TMĐK m \(\le2\))

Vậy m = 3/2 thì biểu thức P đạt GTNN là 29/4

31 tháng 5 2019

MÌNH GIẢI SAI CHỔ NÀO BẠN THÔNG CẢM NHA! ^.^ !!

23 tháng 5 2015

2. \(A=\frac{x^2-2x+2011}{x^2}=1-\frac{2}{x}+\frac{2011}{x^2}=\left(\frac{2011}{x^2}-\frac{2}{x}+\frac{1}{2011}\right)+\frac{2000}{2011}=\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2+\frac{2000}{2011}\)

\(\Leftrightarrow A\ge\frac{2000}{2011}\Rightarrow MinA=\frac{2000}{2011}\Leftrightarrow\frac{\sqrt{2011}}{x}=\frac{1}{\sqrt{2011}}\Leftrightarrow x=2011\)