Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)
=\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)
Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)
ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
Lời giải:
a) ĐK: \(x>0; x\neq 25; x\neq 36\)
PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)
\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)
\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)
Vậy.......
b)
ĐK: \(x\geq \frac{-1}{2}\)
PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)
\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)
c)
ĐK: \(x\geq 2\)
PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)
\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)
\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)
a, M=\(\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)(ĐKXD: x>0, x#4, x#9)
=\(\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)^{ }}\)=\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Vậy.....
b, ta có x=11-6\(\sqrt{2}\)=\(\left(3-\sqrt{2}\right)^2\)
Thay vào M ta đươc:
M=\(\frac{\sqrt{\left(3-\sqrt{2}\right)^2}+1}{\sqrt{\left(3-\sqrt{2}\right)^2}-3}\)=\(\frac{3-\sqrt{2}+1}{3-\sqrt{2}-3}=\frac{4-\sqrt{2}}{-\sqrt{2}}=1-2\sqrt{2}\)
c,Để M<1<=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)<1 <=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)-1<0<=> \(\frac{4}{\sqrt{x}-3}\)<0<=> x<9(t/m x#9) mà x>0, x#4 => 0<x<9 và x#4
Vậy....
d, Để M∈Z <=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)∈Z<=>\(1+\frac{4}{\sqrt{x}-3}\)∈Z<=>\(\frac{4}{\sqrt{x}-3}\)∈Z<=> 4⋮\(\sqrt{x}-3\)<=>\(\sqrt{x}-3\)∈Ư(4)={\(\pm\)1,\(\pm\)2,\(\pm\)4}
<=>\(\sqrt{x}\) ∈ {2,4,5,1,7}
<=>x ∈ {4,16,25,1,49} mà x#4
=> x∈ {16,25,1,49}
vậy..
Xin phép sửa đề : đoạn cuối n -> m
Bài làm :
PT <=> \(\sqrt{x-9}+3+m\left(\sqrt{x-9}+1\right)=x+\frac{3m+1}{2}\)
Đặt \(t=\sqrt{x-9}\left(t\ge0\right)\)
PT trở thành :
\(t+3+m\left(t+1\right)=t^2+9+\frac{3m+1}{2}\)
\(\Leftrightarrow2t^2-2\left(m+1\right)t+m+13=0\left(1\right)\)
PT ban đầu có nghiệm \(x_1< 10< x_2\)
<=> (1) có nghiệm \(0\le t_1< 1< t_2\Leftrightarrow\hept{\begin{cases}\Delta'>0\\\left(t_1-1\right)\left(t_2-1\right)< 0\\t_1+t_2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)^2-2\left(m+13\right)>0\\\frac{m+13}{2}-m-1+1< 0\\m+1>0\end{cases}\Leftrightarrow m>13}\)
taijsao delta' nhỏ hơn 0 bạn