\(\left(0;\dfrac{\pi}{2}\right)\) : 

mx

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 10 2020

a.

\(cos\left(3x-\frac{\pi}{6}\right)=sin\left(2x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(3x-\frac{\pi}{6}\right)=cos\left(\frac{\pi}{6}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=\frac{\pi}{6}-2x+k2\pi\\3x-\frac{\pi}{6}=2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

b.

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\cos3x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne\frac{1}{2}\end{matrix}\right.\)

\(tan3x-tanx=0\)

\(\Leftrightarrow\frac{sin3x}{cos3x}-\frac{sinx}{cosx}=0\)

\(\Leftrightarrow sin3x.cosx-cos3x.sinx=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow2sinx.cosx=0\)

\(\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)

NV
1 tháng 10 2020

c.

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{2\pi}{5}\right)=\frac{1}{2}-\frac{1}{2}cos\left(4x+\frac{8\pi}{5}\right)\)

\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=-cos\left(4x+\frac{3\pi}{5}+\pi\right)\)

\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=cos\left(4x+\frac{3\pi}{5}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{3\pi}{5}=2x-\frac{2\pi}{5}+k2\pi\\4x+\frac{3\pi}{5}=\frac{2\pi}{5}-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

d.

\(\Leftrightarrow cos^2\left(2x-1\right)=0\)

\(\Leftrightarrow cos\left(2x-1\right)=0\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{1}{2}+\frac{k\pi}{2}\)

NV
15 tháng 9 2020

1.

ĐKXĐ: ...

\(3cotx=-\sqrt{3}\Leftrightarrow cotx=-\frac{1}{\sqrt{3}}\)

\(\Rightarrow x=-\frac{\pi}{3}+k\pi\)

2.

\(\Leftrightarrow2x+\frac{\pi}{6}=\frac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{2}\)

3.

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{2\pi}{3}+k2\pi\\x+\frac{\pi}{6}=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

4.

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là? 2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là? 3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\) 4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là? 5. Nghiệm...
Đọc tiếp

1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là?

2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là?

3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\)

4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là?

5. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}sin2x-2cos^2x=4\) là?

6. Pt: \(cos2x+sinx=\sqrt{3}\left(cosx-sin2x\right)\) có bn nghiệm \(x\varepsilon\left(0;2020\right)\)?

7. Pt: \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\sqrt{3}cosx=2\) có nghiệm dương nhỏ nhất là a và nghiệm âm lớn nhất là b thì a + b là?

8. Pt: \(3sin3x+\sqrt{3}cos9x=2cosx+4sin^33x\) có số nghiệm trên \(\left(0;\frac{\pi}{2}\right)\) là?

9. Tìm m để pt: \(sin2x+cos^2x=\frac{m}{2}\) có nghiệm là?

10. Cho pt: \(\left(m^2+2\right)cos^2x-2msin2x+1=0\). Để pt có nghiệm thì giá trị thích hợp của tham số m là?

11. Tìm tập giá trị lớn nhất, nhỏ nhất của hs sau: \(y=\frac{sin^22x+3sin4x}{2cos^22x-sin4x+2}\)

11
16 tháng 8 2020

Cho e hỏi là vì sao khúc cuối có dấu bằng mà trên đề k có dấu bằng ạ?

NV
16 tháng 8 2020

Vì mình lấy giá trị nguyên bạn

Chính xác là \(-\frac{1}{4}< k< \frac{2020-\frac{\pi}{2}}{2\pi}\)

\(\Rightarrow-0,25< k< 321,243\) (1)

Nhưng k nguyên nên chỉ cần lấy khoảng ở số nguyên gần nhất, tức là \(0\le k\le321\)

23 tháng 10 2020

\(2\cos^2x+\left(3-2m\right)\cos x=2-m\)

\(t=\cos x\Rightarrow t\in\left[-1;1\right]\)

\(\Delta=\left(3-2m\right)^2-4.2\left(m-2\right)=4m^2-12m+9-8m+16=4m^2-20m+25=\left(2m-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{2m-3-2m+5}{4}\\t=\frac{2m-3+2m-5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=\frac{1}{2}\\t=m-2\end{matrix}\right.\)

\(t=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\left(tm\right)\)

Vậy để có 3 nghiệm thuộc khoảng (-pi/2;pi) thì pt còn lại cần 1 nghiệm nữa khác 2 nghiệm kia cũng thuộc khoảng (-pi/2;pi)

Xét hàm cos: \(t=m-2\) trong \(\left(-\frac{\pi}{2};\pi\right)\)

Hỏi đáp Toán

Nhìn vô bbt ta thấy \(-1< t< 0\) thì phương trình có 1 nghiệm

\(\Rightarrow-1< m-2< 0\Leftrightarrow1< m< 2\)

18 tháng 6 2022

1<=m<=2

17 tháng 8 2020

@Nguyễn Việt Lâm giúp em với ạ

NV
23 tháng 9 2020

a.

\(sinx+cosx+\left(sinx+cosx\right)^2+cos^2x-sin^2x=0\)

\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1+2cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\1+2cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
16 tháng 9 2020

c.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(8x+\frac{2\pi}{3}\right)=\frac{1}{2}-\frac{1}{2}cos\left(\frac{14\pi}{5}-2x\right)\)

\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(2\pi+\frac{4\pi}{5}-2x\right)\)

\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(\frac{4\pi}{5}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}8x+\frac{2\pi}{3}=\frac{4\pi}{5}-2x+k2\pi\\8x+\frac{2\pi}{3}=2x-\frac{4\pi}{5}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{75}+\frac{k\pi}{5}\\x=-\frac{11\pi}{45}+\frac{k\pi}{3}\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos4x=\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{2\pi}{3}\right)\)

\(\Leftrightarrow cos4x=-cos\left(2x+\frac{2\pi}{3}\right)\)

\(\Leftrightarrow cos4x=cos\left(\frac{\pi}{3}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-2x+k2\pi\\4x=2x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{18}+\frac{k\pi}{3}\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(10x+\frac{2\pi}{3}\right)-\frac{1}{2}-\frac{1}{2}cos\left(6x+\frac{\pi}{2}\right)=0\)

\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=-cos\left(6x+\frac{\pi}{2}\right)\)

\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=cos\left(\frac{\pi}{2}-6x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}10x+\frac{2\pi}{3}=\frac{\pi}{2}-6x+k2\pi\\10x+\frac{2\pi}{3}=6x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{96}+\frac{k\pi}{8}\\x=-\frac{7\pi}{24}+\frac{k\pi}{2}\end{matrix}\right.\)

NV
19 tháng 10 2020

\(2\left(1-sin^2x\right)+3sinx+3=0\)

\(\Leftrightarrow-2sin^2x+3sinx+5=0\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{5}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\frac{\pi}{2}+k2\pi\)

\(0\le-\frac{\pi}{2}+k2\pi\le200\pi\Rightarrow1\le k\le100\) (có 100 nghiệm)

Tổng các nghiệm:

\(\sum x=-\frac{\pi}{2}.100+\sum\limits^{100}_{k=1}2k\pi=10050\pi\)

2.

\(\Leftrightarrow2cos^2x-1+3\left|cosx\right|-1=0\)

\(\Leftrightarrow2\left|cosx\right|^2+3\left|cosx\right|-2=0\Rightarrow\left[{}\begin{matrix}\left|cosx\right|=\frac{1}{2}\\\left|cosx\right|=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Pt có 2 nghiệm trên đoạn đã cho \(x=\pm\frac{\pi}{3}\)