\(\left(\sqrt{7-m}-1\right)x+2\) đồng biến trên R

b y=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 7 2021

a.

Hàm số đồng biến trên R khi và chỉ khi:

\(\left\{{}\begin{matrix}7-m\ge0\\\sqrt{7-m}-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le7\\m< 6\end{matrix}\right.\) \(\Leftrightarrow m< 6\)

b. Để hàm nghịch biến trên R

\(\Leftrightarrow m^2+m+1< 0\)

\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}< 0\) (vô lý)

Vậy ko tồn tại m thỏa mãn yêu cầu

13 tháng 7 2021

cảm ơn tất cả mọi người,đấy là bài cuối của tuần này rồi

4 tháng 8 2016

a  đồng biến khi 5+m>0
b nghịch biến khi \(m< 1\)
c nghịch biến khi \(5-43+m^2< 0\)

18 tháng 11 2016

B1a) m khác 5, khác -2

b) m khác 3, m < 3

B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến

b) h số trên là nghịch biến vì 2x > căn 3x

c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến

Để hàm số là hàm số bậc nhất thì hệ số \(a\ne0\)

a) Cm : \(\sqrt{3-m}\ne0\Rightarrow m\ne3\)

b) \(\frac{m-5}{m+2}\ne0\Rightarrow m\ne5\)

Bài 2 : 

Để hàm số đồng biến thì hệ số \(a>0\)

Để hàm số nghịch biến thì hệ số \(a< 0\)

Gợi ý z tư làm nha

5 tháng 8 2016

Hàm số trên có dạng : \(y=ax+b\left(a\ne0\right)\)

Để hàm số nghịch biến thì \(\sqrt{m}-1< 0\Leftrightarrow m< 1\)

14 tháng 10 2019

để hầm số trên nghịch biến trên R thì:\(\left(\sqrt{m}-1\right)\)<0

\(\Leftrightarrow\sqrt{m}< 1\)

\(\Leftrightarrow m< 1\)

vậy để hàm số trên nghịch biến trên R thì m\(< \)1

5 tháng 8 2016

==' đọc sgk chưa bạn.
bám vaof sgk mà làm chứ mấy câu này hỏi thì hơi thừa
\(y=ax+b\)
a<0 thif hamf nghichj bien
a>0 thì hàm đồng biến
nếu a là biểu thcuws có căn thì phải xét dkxd rồi ms kết hợp nghiệm

5 tháng 8 2016

mình chưa học bài đó bạn ơi
mình đang tự học
không hiểu nên hỏi thôi bạn

5 tháng 8 2016

5 - 4m + m2 < 0

=> m2  - 4m + 4 -4 + 5 <0

=> (m-2)2 + 1< 0 ( vô lý)

vậy không có giá trị nào của m để hàm số đã cho nghịch biến

12 tháng 11 2017

a)Để y là hàm số bậc nhất thì

\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)

Từ 2 điều trên suy ra m-2=0

                                  =>m=2

Vậy m=2