Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=x^2-\left(2m+1\right)x+m^2+m\)
Để pt có 2 nghiệm thỏa mãn \(-2< x_1< x_2< 4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)>0\\f\left(-2\right)=4+2\left(2m+1\right)+m^2+m>0\\f\left(4\right)=16-4\left(2m+1\right)+m^2+m>0\\-2< \frac{x_1+x_2}{2}< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1>0\\m^2+5m+6>0\\m^2-7m+12>0\\-4< 2m+1< 8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-2\\m< -3\end{matrix}\right.\\\left[{}\begin{matrix}m>4\\m< 3\end{matrix}\right.\\-\frac{5}{2}< m< \frac{7}{2}\end{matrix}\right.\)
\(\Rightarrow-2< m< 3\)
ĐKXĐ: m<>1, m<>0
a: Để hai đường song song thì \(-\dfrac{2m}{m-1}=\sqrt{3}\)
=>\(-2m=\sqrt{3}m-\sqrt{3}\)
\(\Leftrightarrow m\left(-2-\sqrt{3}\right)=-\sqrt{3}\)
hay \(m=-3+2\sqrt{3}\)
tana=căn 3
nên a=60 độ
b:
\(y=-\dfrac{2m}{m-1}x+\dfrac{2}{m-1}\)
=>\(\dfrac{2m}{m-1}x+y-\dfrac{2}{m-1}=0\)
\(h=d\left(O;d\right)=\dfrac{\left|-\dfrac{2m}{m-1}\cdot0+y\cdot0-\dfrac{2}{m-1}\right|}{\sqrt{\left(\dfrac{2m}{m-1}\right)^2+1^2}}\)
\(=\dfrac{2}{\left|m-1\right|}:\sqrt{\dfrac{4m^2+m^2-2m+1}{\left(m-1\right)^2}}\)
\(=\dfrac{2}{\sqrt{5m^2-2m+1}}\)
Để h lớn nhất thì \(\sqrt{5m^2-2m+1}\) nhỏ nhất
\(5m^2-2m+1=5\left(m^2-\dfrac{2}{5}m+\dfrac{1}{5}\right)\)
\(=5\left(m^2-2\cdot m\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{4}{25}\right)\)
\(=5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}>=\dfrac{4}{5}\)
=>\(\sqrt{5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}}>=\dfrac{2}{\sqrt{5}}\)
Dấu = xảy ra khi m=1/5
ĐKXĐ: m<>1, m<>0
a: Để hai đường song song thì \(-\dfrac{2m}{m-1}=\sqrt{3}\)
=>\(-2m=\sqrt{3}m-\sqrt{3}\)
\(\Leftrightarrow m\left(-2-\sqrt{3}\right)=-\sqrt{3}\)
hay \(m=-3+2\sqrt{3}\)
tana=căn 3
nên a=60 độ
b:
\(y=-\dfrac{2m}{m-1}x+\dfrac{2}{m-1}\)
=>\(\dfrac{2m}{m-1}x+y-\dfrac{2}{m-1}=0\)
\(h=d\left(O;d\right)=\dfrac{\left|-\dfrac{2m}{m-1}\cdot0+y\cdot0-\dfrac{2}{m-1}\right|}{\sqrt{\left(\dfrac{2m}{m-1}\right)^2+1^2}}\)
\(=\dfrac{2}{\left|m-1\right|}:\sqrt{\dfrac{4m^2+m^2-2m+1}{\left(m-1\right)^2}}\)
\(=\dfrac{2}{\sqrt{5m^2-2m+1}}\)
Để h lớn nhất thì \(\sqrt{5m^2-2m+1}\) nhỏ nhất
\(5m^2-2m+1=5\left(m^2-\dfrac{2}{5}m+\dfrac{1}{5}\right)\)
\(=5\left(m^2-2\cdot m\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{4}{25}\right)\)
\(=5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}>=\dfrac{4}{5}\)
=>\(\sqrt{5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}}>=\dfrac{2}{\sqrt{5}}\)
Dấu = xảy ra khi m=1/5
a) \(B=\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{7\sqrt{x}-9}{x-9}\)
\(B=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x-9}-\frac{7\sqrt{x}-9}{x-9}\)
\(B=\frac{x+2\sqrt{x}-3-7\sqrt{x}+9}{x-9}\)
\(B=\frac{x-5\sqrt{x}+6}{x-9}\)
\(B=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
b) c) ?
b mình làm đc rồi, nó ko liên quan gì đến a và c đâu
Bài 2:
a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b: Thay \(x=5-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{-5\left(\sqrt{3}-\sqrt{2}\right)+2}{\sqrt{3}-\sqrt{2}+3}=\dfrac{-5\sqrt{3}+5\sqrt{2}+2}{\sqrt{3}-\sqrt{2}+3}\simeq0,124\)
d: Để A=1/2 thì \(\sqrt{x}+3=-10\sqrt{x}+4\)
\(\Leftrightarrow11\sqrt{x}=1\)
hay x=1/121
Hàm số bị viết thiếu `y=` !
Đk: `-2 <= m <= 2`
Để h/s đồng biến `=>\sqrt{4-m^2}/[9-m^2] > 0` với `-2 < m < 2`
`=>9-m^2 > 0`
`<=>(3-m)(3+m) > 0<=>(m-3)(m+3) < 0<=>-3 < m < 3`
Kết hợp đk
`=>-2 < m < 2`
`->bb C`
Chọn B