Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)
\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)
Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)
Phương trình trở thành :
\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)
a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)
Vậy phương trình có nghiệm là \(x=0\)
b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)
Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]
Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)
t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2
Suy ra phương trình đã cho có nghiệm đúng
\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)
Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm
Bạn tham khảo:
Câu hỏi của Nguyễn Thảo Hân - Toán lớp 10 | Học trực tuyến
\(\frac{\left(x-\sqrt{2}\right)\left(2-2x\right)}{\left(2x-1\right)\left(x+2\right)}>0\Leftrightarrow\left[{}\begin{matrix}-2< x< \frac{1}{2}\\1< x< \sqrt{2}\end{matrix}\right.\)
a/ \(-x>2\Rightarrow x< -2\)
\(\Rightarrow\) Hệ BPT vô nghiệm
b/ \(m=0\) hệ vô nghiệm
Để hệ đã cho có nghiệm
- Với \(m>0\Rightarrow x>\frac{2}{m}\)
\(\Rightarrow\frac{2}{m}< \sqrt{2}\Rightarrow m< \sqrt{2}\Rightarrow0< m< \sqrt{2}\)
- Với \(m< 0\Rightarrow x< \frac{2}{m}\)
\(\Rightarrow\frac{2}{m}>-2\Rightarrow m< -1\)
Vậy để hệ có nghiệm thì: \(\left[{}\begin{matrix}0< m< \sqrt{2}\\m< -1\end{matrix}\right.\)
Lười làm lắm cứ xét từng khoản là được
Đầu tiên giải bất thứ nhất
Ở bất thứ 2 xét 2 trường hợp
- TH 1: \(m\le0\)
- TH2: \(m>0\)
+ \(\hept{\begin{cases}m-x^2>0\\x+m< 0\end{cases}}\)
+\(\hept{\begin{cases}m-x^2< 0\\x+m>0\end{cases}}\)
\(\Leftrightarrow\left(10-m\right)x^2-2\left(m+2\right)x+1< 0\)
- Với \(m\ge10\) BPT đã cho luôn luôn có nghiệm
- Với \(m< 10\) để BPT có nghiệm
\(\Leftrightarrow\Delta'=\left(m+2\right)^2-\left(10-m\right)>0\)
\(\Leftrightarrow m^2+5m-6>0\Rightarrow\left[{}\begin{matrix}m< -6\\m>1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -6\\1< m< 10\end{matrix}\right.\)
Vậy để BPT có nghiệm thì: \(\left[{}\begin{matrix}m< -6\\m>1\end{matrix}\right.\)