K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

2.

\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )

Tương tự.......................

20 tháng 3 2018

1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)

Lại có: b - a < 0 ( a > b)

ab >0 ( a>0, b > 0)

\(\Rightarrow\dfrac{b-a}{ab}< 0\)

Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)

2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b

3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b

1 tháng 10 2018

What do you want to ask?

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

17 tháng 2 2017

\(M=\frac{1}{ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}\)

\(=\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+\left(\frac{1}{a^2+ab}+\frac{1}{b^2+ab}\right)+\frac{1}{2ab}\)

\(\ge\frac{\left(1+1\right)^2}{a^2+2ab+b^2}+\frac{\left(1+1\right)^2}{a^2+ab+b^2+ab}+\frac{2}{\left(a+b\right)^2}\)

\(=\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(\ge\frac{4}{1}+\frac{4}{1}+\frac{2}{1}=10\)

Dấu = xảy ra khi a = b = \(\frac{1}{2}\)

8 tháng 4 2016

Ta có a^2+b^2+1>=ab+a+b (1)

<=> 2a^2+2b^2+2>=2ab+2a+ab

<=>2a^2+2b^2+2-2ab-2a-2b>=0

<=>(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)>=0

<=>(a-b)^2+(a-1)^2+(b-1)^2>=0 luôn đúng

       Vây BĐT(1) đúng (đpcm)

8 tháng 4 2016

a2+b2+1-ab-a-b>=0

2a2+2b2+2-2ab-2a-2b>=0

(a-b)2+(a-1)2+(b-1)2>=0

Dấu = xảy ra khi a=b