Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Xét hàm số: y= -x3 + 2x2 – x – 7
Tập xác định: D = R
\(y'\left(x\right)=-3x^2+4x-1\); \(y'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
y’ > 0 với và y’ < 0 với \(x \in ( - \infty ,{1 \over 3}) \cup (1, + \infty )
Vậy hàm số đồng biến trong (\(\dfrac{1}{3}\),1)(\(\dfrac{1}{3}\),1) và nghịch biến trong (−∞,13)∪(1,+∞)(−∞,13)b) Xét hàm số: \(y=\dfrac{x-5}{1-x}\).
Tập xác định: D = R{1}
\(y'=\dfrac{-4}{\left(1-x\right)^2}< 0,\forall x\in D\)
Vậy hàm số nghịch biến trong từng khoảng (-∞,1) và (1, +∞)
Tập xác định: D = R \ {±3}
y’ < 0 với ∀ x ∈ D.
y' không xác định tại x = ±3
Bảng biến thiên:
Vậy hàm số nghịch biến trong các khoảng (-∞ ; -3); ( -3; 3) và (3; +∞ ).
Tập xác định: D = R \ {1}
y' không xác định tại x = 1
Bảng biến thiên:
Vậy hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)
Tập xác định: D = (-∞ ; -4] ∪ [5; +∞)
y' không xác định tại x = -4 và x = 5
Bảng biến thiên:
Vậy hàm số nghịch biến trong khoảng (-∞; -4); đồng biến trong khoảng (5; +∞).
Tập xác định: D = R \ {1}
y’ < 0 với ∀ x ∈ D (vì –x2 + 2x – 2 < 0).
y' không xác định tại x = 1
Bảng biến thiên:
Vậy hàm số nghịch biến trong các khoảng (-∞ ;1) và (1 ; +∞)