\(\sqrt{8-x}+\sqrt{x-4}\)

A = 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

\(M^2=8-x+x-4+2\sqrt{8-x}\sqrt{x-4}=4+2\sqrt{8-x}\sqrt{x-4}\ge4\)

\(\Rightarrow M\ge2.\) Đẳng thức xảy ra khi \(2\sqrt{8-x}\sqrt{x-4}=0\Leftrightarrow x=4\text{ hoặc }x=8\)

GTNN của M là 2.

Áp dụng bất đẳng thức Côsi, ta có: \(2\sqrt{x-4}\sqrt{8-x}\le\left(x-4\right)+\left(8-x\right)=4\)

\(\Rightarrow M^2\le4+4=8\)

\(\Rightarrow M\le2\sqrt{2}.\)

Đẳng thức xảy ra khi \(\sqrt{x-4}=\sqrt{8-x}\Leftrightarrow x=6.\)

Vậy GTLN của M là \(2\sqrt{2}\)

A tương tự.

22 tháng 2 2017

\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)

\(A\le2\sqrt{5}..\)

22 tháng 2 2017

Bài a, c tìm GTLN thì làm được rồi, chỉ không biết tìm GTNN bằng BĐT như thế nào?
 

27 tháng 7 2017

1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ : \(2\le x\le4\)

\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Áp dụng bđt AM - GM ta có : 

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)

Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2

=> A = \(\sqrt{2}\)

Vậy \(\sqrt{2}\le A\le2\)

28 tháng 8 2020

Mọi người giải giúp em nhé

Tính hợp lí

(2018/2017-2019/2018+2020/2019)×(1/2-

1/3-1/6)×(1/2+1/3+1/4+...+1/2020)

Em cảm ơn

28 tháng 8 2020

Tìm Max trước thôi nhé, Min nghĩ sau:V

a) đk: \(1\le x\le4\)

Ta có: \(A=\sqrt{x-1}+\sqrt{4-x}\)

=> \(A^2=\left(\sqrt{x-1}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-1+4-x\right)=2.3=6\)

=> \(A\le\sqrt{6}\) ( BĐT Bunhiacopxki)

Dấu "=" xảy ra khi: \(x-1=4-x\Rightarrow x=\frac{5}{2}\)

Vậy Max(A) = \(\sqrt{6}\) khi x = 5/2

b) đk: \(-1\le x\le6\)

Tương tự sử dụng BĐT Bunhiacopxki:

\(B\le\sqrt{\left(1^2+1^2\right)\left(x+1+6-x\right)}=\sqrt{2.7}=\sqrt{14}\)

Dấu "=" xảy ra khi: \(x+1=6-x\Rightarrow x=\frac{5}{2}\)

Vậy Max(B) = \(\sqrt{14}\) khi \(x=\frac{5}{2}\)

Bài 2: 

a: \(\sqrt{4-x^2}>=0\)

Dấu '=' xảy ra khi x=2 hoặc x=-2

b: \(\sqrt{x^2-x+3}=\sqrt{x^2-x+\dfrac{1}{4}+\dfrac{11}{4}}\)

\(=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}>=\dfrac{\sqrt{11}}{2}\)

Dấu '=' xảy ra khi x=1/2

c: \(x+\sqrt{x}+1>=1\)

=>1/(x+căn x+1)<=1

Dấu '=' xảy ra khi x=0

NM
23 tháng 8 2021

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

26 tháng 6 2016

a) ĐK: -1 <= x <= 2

Ta thấy \(M\ge0\)với mọi x thỏa mãn ĐK.

\(M^2=2-x+2\sqrt{2-x}\sqrt{1+x}+1-x=3+2\sqrt{2-x}\sqrt{1+x}\)

Vì M>0 nên M min khi M2 min khi \(2\sqrt{2-x}\sqrt{1+x}\)min = 0. Khi đó x = -1 hoặc x = 2 và GTNN của M \(=\sqrt{3}\)

Mặt khác theo Bunhiakopxki thì: \(\sqrt{2-x}+\sqrt{1+x}\le\sqrt{\left(1^2+1^2\right)\left(2-x+1+x\right)}=\sqrt{6}\)nên GTLN của M \(=\sqrt{6}\)khi \(\sqrt{2-x}=\sqrt{1+x}\Leftrightarrow x=\frac{1}{2}\)

KL: GTNN của M \(=\sqrt{3}\)khi x = -1 hoặc 2

GTLN của M \(=\sqrt{6}\)khi x = 1/2.

b) Tương tự, 

GTNN của N \(=\sqrt{2}\)khi x = 2 hoặc 4

GTLN của N = 2 khi x = 3.

19 tháng 11 2016

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

19 tháng 11 2016

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé