\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

để tìm gtnn áp dụng bđt côsi

để tìm gtln 

7 tháng 4 2018

Lại có: \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge2\)Tương tự \(\frac{b}{c}+\frac{c}{b}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)

Ta có: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=1+\frac{b}{a}+\frac{b}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)

Dấu "=" xảy ra khi \(a=b=c\)

8 tháng 8 2020

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2020

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

18 tháng 11 2017

Sửa đề: Cho a , b ,c dương thỏa mãn: a + b + c = 6abc .   Phần dưới vẫn như vậy.

Ta có thể viết:

\(Q=\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\Leftrightarrow Q=\frac{1}{a^3}+\frac{bc}{c+2b}+\frac{1}{b^3}+\frac{ca}{a+2c}+\frac{1}{c^3}+\frac{ab}{b+2a}\)

\(\Rightarrow a=b=c\)

\(\Leftrightarrow Q=\frac{1}{a^3b^3c^3}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\Leftrightarrow\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]^9}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\)

Do đó:

\(Q^9=\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}\Rightarrow Q^9\ge0\) , mà a , b ,c thỏa mãn a + b + c = 6abc

Vậy GTNN của Q là:    6000 : 9 = 666,6

Vậy dấu "=" xảy ra khi và chỉ khi \(\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}=666,6\) 

\(\Rightarrow Q\) đạt GTNN bằng 666,6 và khi a =b =c = 666,6

Ps: Giải chơi nhé! Đừng làm theo! Mình không chịu trách nhiệm hay bất cứ hình phạt nào như: Trừ điểm hỏi đáp, hack nic mình đâu nhé!

8 tháng 11 2019

Áp dụng bđt AM-GM ta có:

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\end{cases}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\)

\(\Rightarrow P\ge9\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy ..

ko biết đúng ko

8 tháng 11 2019

Câu hỏi của •Čáøツ - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo 3 cách nhé!

23 tháng 11 2016

Ta có

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}\ge9\)

Dấu = xảy ra khi \(a=b=c=\frac{2014}{6}=\frac{1007}{3}\)

24 tháng 11 2016

Bài này mk làm đc tưf bữa mới đăng lên r ..

10 tháng 1 2017

\(P=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2\left(b+c\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{ab}{c^2\left(a+b\right)}\left(abc=1\right)\)

\(=\frac{1}{a^2\left(\frac{1}{c}+\frac{1}{b}\right)}+\frac{1}{b^2\left(\frac{1}{c}+\frac{1}{a}\right)}+\frac{1}{c^2\left(\frac{1}{b}+\frac{1}{a}\right)}\)

\(=\frac{\frac{1}{a^2}}{\frac{1}{c}+\frac{1}{b}}+\frac{\frac{1}{b^2}}{\frac{1}{c}+\frac{1}{a}}+\frac{\frac{1}{c^2}}{\frac{1}{b}+\frac{1}{a}}\)

Đặt \(\left\{\begin{matrix}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{matrix}\right.\) suy ra \(xyz=1\). Khi đó:

\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

Áp dụng BĐT AM-GM ta có:

\(\left\{\begin{matrix}\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\\\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\\\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\end{matrix}\right.\).Cộng theo vế ta có:

\(P+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow P\ge\frac{x+y+z}{2}\ge\frac{3}{2}\left(x+y+z\ge3\sqrt[3]{xyz}=3\right)\)

12 tháng 1 2017

Đại số lớp 8

30 tháng 4 2019

lớn nhất hay nhỏ nhất thế bạn

1 tháng 5 2019

lớn nhất

4 tháng 11 2019

\(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Mặt khác \(\frac{x}{y}+\frac{y}{x}\ge2\forall xy>0\)

\(\Rightarrow\frac{P}{3+2+2+2}=9\)

Vậy Pmin=9 khi a=b=c

4 tháng 11 2019

Cô si thẳng luôn cho nó chất:v

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)