Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\sqrt{4x^2+4x+2}=\sqrt{\left(4x^2+4x+1\right)+1}\)
\(=\sqrt{\left(2x+1\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)
Vậy Min(A) = 1 khi x = -1/2
b) Ta có: \(B=\sqrt{2x^2-4x+5}=\sqrt{\left(2x^2-4x+2\right)+3}\)
\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy Min(B) = \(\sqrt{3}\) khi x = 1
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Em làm bài 2 nha!
\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\) (1)
+)\(A=0\Rightarrow x=\frac{3}{4}\)
+) A khác 0 thì (1) là pt bậc 2.
\(\Delta'=\left(2\right)^2-A\left(A-3\right)\ge0\Leftrightarrow4-A^2+3A\ge0\Leftrightarrow-1\le A\le4\)
Vậy...
Bài 1: (bài nào nghĩ ra thì em làm trước)
C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\). Đặt x - 1 = y >0 thì x = y + 1 >1
Khi đó \(C=\frac{2\left(y+1\right)^2-6\left(y+1\right)+5}{y^2}=\frac{2y^2-2y+1}{y^2}\)
\(=\frac{1}{y^2}-\frac{2}{y}+2\). đặt \(\frac{1}{y}=t>0\). \(C=t^2-2t+2=\left(t-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi t = 1 suy ra y = 1 suy ra x = 2
Vậy Min C = 1 khi x = 2
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
\(\frac{2x^2-4x+5}{x^2+1}=\frac{x^2+1+\left(x^2-4x+4\right)}{x^2+1}=\frac{x^2+1+\left(x-2\right)^2}{x^2+1}=1+\frac{\left(x-2\right)^2}{x^2+1}\ge1\forall x\)