Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2013\ge2013+1=2014;;;.\)
A min = 2014 khi x =1/2
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
M=(4x2-4x+1)+(x+\(\dfrac{1}{4x}\))+2013
=(2x-1)2+(x+\(\dfrac{1}{4x}\))+2013
x>0 nên áp dụng BĐT côsi cho 2 số không âm:
\(x+\dfrac{1}{4x}\ge2\sqrt{\dfrac{x}{4x}}=1\)
Dấu "=" xảy ra khi 4x2=1<=>x=\(\dfrac{1}{2}\)
(2x-1)2\(\ge\)0 với mọi x
Dấu "=" xảy ra khi x=\(\dfrac{1}{2}\)
=>M\(\ge\)0+1+2013=2014
=>Mmin=2014 khi và chỉ khi x=\(\dfrac{1}{2}\)
Vậy...
Áp dụng bđt cô si với 2 số dương 4x và 1/4x ta có: 4x+1/4x ≥ 2(1)
Đặt (4√x +3)/ (x+1) =B ; √x =t => x=t^2
ta có : B(t^2 +1) = 4t+3
<=>Bt^2 -4t+B-3=0
Xét delta =b^2 -4ac = 16-4B(B-3)= -4B^2 +12B+16 ≥ 0(*) (Để phương trình có gtnn thì pt phải có nghiệm nên delta ≥ 0)
Từ (*) => B^2 -3B-4 ≤ 0
<=> (B-4)(B+1) ≤ 0
=> -1 ≤ B ≤ 4
=>-B ≥ -4(2)
TỪ (1) và (2) => A ≥ 2+(-4)+2016=2014
Dấu = xảy ra <=> 4x=1/4x và B=4 (tự giải tìm x , ta sẽ được x = 1/4)
Xét \(B=\frac{x+1}{4\sqrt{x}+3}\Leftrightarrow16B=\frac{16x+16}{4\sqrt{x}+3}.\)\(=\frac{\left(4\sqrt{x}+3\right)\left(4\sqrt{x}-3\right)+25}{4\sqrt{x}+3}\)
\(=4\sqrt{x}-3+\frac{25}{4\sqrt{x}+3}=4\sqrt{x}+3+\frac{25}{4\sqrt{x}+3}-6\)
Áp dụng BĐT Cauchy
\(16B\ge2\sqrt{25}-6=4\Leftrightarrow B\ge\frac{1}{4}\)
\(\Rightarrow-\frac{4\sqrt{x}+3}{x+1}\ge-4\)
Áp dụng bđt Cauchy
\(\Rightarrow A\ge2\sqrt{\frac{4x.1}{4x}}-4+2016=2014\)
Vậy Min A=2014 khi x=1/4
Ta có : \(A=\frac{16x^2+4x+1}{2x}=8x+2+\frac{1}{2x}\)
Áp dụng bđt Cauchy : \(8x+\frac{1}{2x}\ge2\sqrt{8x.\frac{1}{2x}}=4\)
\(\Rightarrow A\ge6\)
Vậy MIN A = 6 \(\Leftrightarrow\begin{cases}x>0\\8x=\frac{1}{2x}\end{cases}\) \(\Leftrightarrow x=\frac{1}{4}\)
Cách khác nhanh hơn:
Áp dụng BĐT AM-GM:
\(16x^2+4x+1\ge3\sqrt[3]{4^2.x^2.4x}=3.4x=12x\)
Suy ra \(A\ge\frac{12x}{2x}=6\).
Đẳng thức xảy ra khi \(16x^2=4x=1\Leftrightarrow x=\frac{1}{4}\)
________________
P/S: Cách này nhanh hơn avf không đòi hỏi phải tính toán nhiều :D
Áp dụng bất đẳng thức AM-GM ta có :
\(4x+\frac{1}{4x}\ge2\sqrt{4x\cdot\frac{1}{4x}}=2\)
=> \(A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016\)
=> \(A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014\)
=> \(A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014\)
hay \(A\ge2014\). Đẳng thức xảy ra <=> \(\hept{\begin{cases}4x=\frac{1}{4x}\\2\sqrt{x}-1=0\end{cases}}\Rightarrow x=\frac{1}{4}\)
Vậy GTNN của A = 2014 <=> x = 1/4
\(M=4x^2-3x+\dfrac{1}{4x}+2017\)
\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2016\ge2017\)
GTNN là 1/2