Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{x^2}{x-2}\left(\dfrac{x^2+4-4x}{x}\right)+3\)
\(D=\dfrac{x^2}{x-2}\dfrac{\left(x-2\right)^2}{x}+3\)
\(D=x\left(x-2\right)+3\)
\(D=x^2-2x+1+2\)
\(D=\left(x-1\right)^2+2\ge2\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy MinD là 2 \(\Leftrightarrow x=1\)
Bài làm:
+ \(C=10\left(x^2-2\right)+5=10x^2-20+5=10x^2-15\ge-15\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(10x^2=0\Rightarrow x=0\)
Vậy \(Min\left(C\right)=-15\Leftrightarrow x=0\)
+ \(D=\left(7-x\right)\left(2x+1\right)=-2x^2+13x+7=-2\left(x^2-\frac{13}{2}x+\frac{169}{16}\right)-\frac{225}{8}\)
\(=-2\left(x-\frac{13}{4}\right)^2-\frac{225}{8}\le-\frac{225}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-2\left(x-\frac{13}{4}\right)^2=0\Rightarrow x=\frac{13}{4}\)
Vậy \(Max\left(D\right)=-\frac{225}{8}\Leftrightarrow x=\frac{13}{4}\)
+ \(H=x^2+y^2+2x-4y+10=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+5\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy \(Min\left(H\right)=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
+ \(E=-x^2-4x+6y-y^2-2021=-\left(x^2+4x+4\right)-\left(y^2-6y+9\right)-2008\)
\(=-\left(x+2\right)^2-\left(y-3\right)^2-2008\le-2008\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+2\right)^2=0\\-\left(y-3\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy \(Max\left(E\right)=-2008\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Học tốt!!!!
Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)
Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)
Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).
Vậy giá trị lớn nhất là \(\frac{1}{2}\)
Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)
Như Nam có câu trả lời hay đó !!!
Vừa zễ hiểu, vừa zễ làm !
Thanks
\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)
Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)
Dấu "=" xảy ra khi x=1/2
Vậy Cmin=-6 khi x=1/2
\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)
Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)
\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)
\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)
\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)
Dấu "=" xảy ra khi x=y=10
Vậy Emax = 100/201 khi x=y=10
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
x^2 -4x+5+y^2+2y
=(x^2-4x+4)+(y^2+2y +1)
=(x-2)^2+(y+1)^2
vì (x-2 )^2 >= 0
(y+1)^2>=0
=)) (x-2)^2 +(y+1)^2 >=0
dấu "=" xảy ra
<=>x-2 =0 =)x=2
và y+1=0 =)y=-1
vậy..........
tại sao học 24 ngu thế , bài sai rồi mà vẵn chọn ak , giáo viên trang này bị khùng điên cả ak , hay là mắt đui ko biết nhìn mà bấm ngu thế
\(I=\left(x-2\right)^2+\left(x-5\right)^2\)
Ta có :
\(\left(x-2\right)^2\ge0\forall\) và \(\left(x-5\right)^2\ge0\forall x\)
=> \(I\ge0\)
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}\)
=> không có giá trị nào để I đạt giá trị nhỏ nhất .
\(I=\left(x-2\right)^2+\left(x-5\right)^2\)
Đặt \(x-2=t\)
\(\Rightarrow I=t^2+\left(t-3\right)^2\)
\(I=t^2+t^2-6t+9\)
\(I=2t^2-6t+9\)
\(I=2.\left(t^2-2.t.1,5+2,25\right)+4,5\)
\(I=2.\left(t-1,5\right)^2+4,5\)
Ta có: \(2.\left(t-1,5\right)^2\ge0\forall t\)
\(\Rightarrow2.\left(t-1,5\right)^2+4,5\ge4,5\forall t\)
\(I=4,5\Leftrightarrow2.\left(t-1,5\right)^2=0\Leftrightarrow t-1,5=0\Leftrightarrow t=1,5\)
\(\Rightarrow x-2=1,5\)
\(\Rightarrow x=3,5\)
Vậy \(I_{min}=4,5\Leftrightarrow x=3,5\)
Tham khảo nhé~
\(\left(x-4\right)^2+\left(x-5\right)^2\)
\(=x^2-8x+16+x^2-10x+25=2x^2-18x+41\)
\(=2\left(x^2-9x+\frac{41}{2}\right)=2\left[x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\)
Vì \(\left(x-\frac{9}{2}\right)^2\ge0\)
nên \(2\left(x-\frac{9}{2}\right)\ge0\)
do đó \(2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Vậy \(Min_{\left(x-4\right)^2+\left(x-5\right)^2}=\frac{1}{2}\)khi \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
A = x( 6 - x ) + 74 + x
A = 6x - x2 + 74 + x
A = - x2 + 7x + 74
A = - ( x2 - 7x - 74 )
A = - [ x2 - 2 . 7 / 2 + ( 7 / 2 )2 - ( 7 / 2 )2 - 74 ]
A = - ( x - 7 / 2 )2 - 345 / 2 \(\le\)- 345 / 2
Dấu= xảy ra \(\Leftrightarrow\)x - 7 / 2 = 0
\(\Rightarrow\)x = 7 / 2
Vậy : Max A = - 345 / 2 \(\Leftrightarrow\)x = 7 / 2
\(x\left(x-6\right)+74+x\)
\(=x^2-6x+74+x\)
\(=x^2-5x+74\)
\(=\left(x^2-2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{271}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{271}{4}\ge\frac{271}{4}\)
Dấu '' = '' xảy ra
\(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy..................
P/s : chưa kt lại bài nên sai bỏ qua