K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 7 2024

Lời giải:
Áp dụng BĐT AM-GM:

$x^6+\frac{1}{8}+\frac{1}{8}\geq 3\sqrt[3]{\frac{x^6}{64}}=\frac{3}{4}x^2$

$y^6+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}y^2$

Cộng 2 BĐT trên và thu gọn theo vế thì:

$A+\frac{1}{2}\geq \frac{3}{4}(x^2+y^2)$

$\Leftrightarrow A+\frac{1}{2}\geq \frac{3}{4}$

$\Leftrightarrow A\geq \frac{1}{4}$

--------------------

Lại có:

$x^2+y^2=1\Rightarrow x^2\leq 1; y^2\leq 1\Rightarrow x^4\leq 1; y^4\leq 1$

Khi đó:

$x^6\leq x^2; y^6\leq y^2$

$\Rightarrow x^6+y^6\leq x^2+y^2$

$\Rightarrow A\leq 1$
Vậy $A_{\min}=\frac{1}{4}; A_{\max}=1$

26 tháng 5 2019

\(A=2\sqrt{x-1}+\sqrt{10-4x}\)

\(=\sqrt{4x-4}+\sqrt{10-4x}\)

Áp dung BĐT Bun-hia-cop-xki:

\(|\sqrt{4x-4}+\sqrt{10-4x}|\le\sqrt{1+1}.\sqrt{4x-4+10-4x}=2\sqrt{3}\)

\(\Rightarrow-2\sqrt{3}\le A\le2\sqrt{3}\)

Dấu '=' xảy ra khi \(x=\frac{7}{4}\)

21 tháng 5 2019

ai giải = cách tam thức bậc 2 càng tốt nha mình k mạnh cho

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

31 tháng 1 2017

Đặt x + y = t

=> A = t + 1

Ta có: x2+2xy+7(x+y)+2y2+10=0

<=> (x2 + 2xy + y2) + 7(x + y) + 10 + y2 = 0

<=> (x + y)2 + 7(x + y) + 10 = - y2

<=> t2 + 7t + 10 = - y2 \(\le\)0

<=> \(-5\le t\le-2\)

<=> \(-4\le t+1\le-1\)

<=> \(-4\le A\le-1\)

Vậy GTLN là A = - 1dấu bằng xảy ra khi x = - 2, y = 0; GTNN là A = - 4 dấu bằng xảy ra khi x = - 5, y = 0

10 tháng 8 2015

\(M\ge3\left(ab+bc+ca\right)+2\sqrt{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}=3\left(ab+bc+ca\right)+2\sqrt{1-2\left(ab+bc+ca\right)}\)

\(\text{Đặt }t=\sqrt{1-2\left(ab+bc+ca\right)}\Rightarrow ab+bc+ca=\frac{1-t^2}{2}\)

\(\text{Ta có: }0\le ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)

\(\Rightarrow ab+bc+ca\in\left[0;\frac{1}{3}\right]\)

\(\Rightarrow-2\left(ab+bc+ca\right)\in\left[-\frac{2}{3};0\right]\)

\(\Rightarrow1-2\left(ab+bc+ca\right)\in\left[\frac{1}{3};1\right]\)

\(\Rightarrow t\in\left[\frac{1}{\sqrt{3}};1\right]\)

 

\(M=3.\frac{1-t^2}{2}+2t=-\frac{3}{2}t^2+2t+\frac{3}{2}\)

Lập bảng biến thiên hàm bậc 2, suy ra \(\text{Min }M\text{ (}t\in\left[\frac{1}{\sqrt{3}};1\right]\text{) }=2\text{ tại }t=1\)

Vậy GTNN của M là 2 khi t = 1 hay \(ab+bc+ca=0\Leftrightarrow\left(a;b;c\right)=\left(1;0;0\right);\left(0;0;1\right);\left(0;1;0\right)\)