\(\frac{7x-8}{2x-3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

2 tháng 8 2018

a) Vì : \(\left(x+1\right)^2\ge0\forall x\)

             \(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)

Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)

29 tháng 1 2019

b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy....

17 tháng 9 2016

 A=5-3(2x+1)^2

Ta có : (2x+1)^2\(\ge\)0

\(\Rightarrow\)-3(2x-1)^2\(\le\)0

\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5

Dấu = xảy ra khi : (2x-1)^2=0

=> 2x-1=0 =>x=\(\frac{1}{2}\)

Vậy : A=5 tại x=\(\frac{1}{2}\)

Ta có : (x-1)^2 \(\ge\)0

=> 2(x-1)^2\(\ge\)0

=>2(x-1)^2+3 \(\ge\)3

=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)

Dấu = xảy ra khi : (x-1)^2 =0

=> x = 1

Vậy : B = \(\frac{1}{3}\)khi x = 1

\(\frac{x^2+8}{x^2+2}\)\(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Làm như câu B                   GTNN = 4 khi x =0 

k vs nha

27 tháng 1 2017

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

18 tháng 10 2019

a) Ta có: 3|x - 14| \(\ge\)\(\forall\)x

=> 3|x - 14| + 4 \(\ge\)\(\forall\)x

=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)

Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14

Vậy MaxA = 3/2 <=> x = 14

8 tháng 11 2020

b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6  + 2 + 2x = -4 khi x \(\le\)-3

3 tháng 6 2019

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

13 tháng 9 2020

Vì | x - 0,4 | lớn hơn hoặc bằng 0 với mọi x

=> | x - 0,4 | + 2,5 lớn hơn hoặc bằng 2,5

Dấu "=" xảy ra <=> | x - 0,4 | = 0 <=> x = 0,4

Vậy minA = 2,5 <=> x = 0,4

Vì \(\left|2x-\frac{1}{2}\right|\ge0\forall x\)\(\Rightarrow-\frac{3}{2}+\left|2x-\frac{1}{2}\right|\ge-\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-\frac{1}{2}\right|=0\Leftrightarrow2x=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

Vậy minB = - 3/2 <=> x = 1/4

13 tháng 9 2020

+ Ta có: \(A=\left|x-0,4\right|+2,5\)

    Vì \(\left|x-0,4\right|\ge0\forall x\)\(\Rightarrow\)\(\left|x-0,4\right|+2,5\ge2,5\forall x\)

         \(\Rightarrow\)\(A_{min}=2,5\)

    Dấu "=" xảy ra khi và chỉ khi: \(\left|x-0,4\right|=0\)

                                             \(\Leftrightarrow x-0,4=0\)

                                             \(\Leftrightarrow x=0,4\)

Vậy \(A_{min}=2,5\)\(\Leftrightarrow\)\(x=0,4\)