Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
a) Vì : \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)
Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)
b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy....
A=5-3(2x+1)^2
Ta có : (2x+1)^2\(\ge\)0
\(\Rightarrow\)-3(2x-1)^2\(\le\)0
\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5
Dấu = xảy ra khi : (2x-1)^2=0
=> 2x-1=0 =>x=\(\frac{1}{2}\)
Vậy : A=5 tại x=\(\frac{1}{2}\)
Ta có : (x-1)^2 \(\ge\)0
=> 2(x-1)^2\(\ge\)0
=>2(x-1)^2+3 \(\ge\)3
=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)
Dấu = xảy ra khi : (x-1)^2 =0
=> x = 1
Vậy : B = \(\frac{1}{3}\)khi x = 1
\(\frac{x^2+8}{x^2+2}\)= \(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Làm như câu B GTNN = 4 khi x =0
k vs nha
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
a) Ta có: 3|x - 14| \(\ge\)0 \(\forall\)x
=> 3|x - 14| + 4 \(\ge\)4 \(\forall\)x
=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)
Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14
Vậy MaxA = 3/2 <=> x = 14
b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6 + 2 + 2x = -4 khi x \(\le\)-3
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
Vì | x - 0,4 | lớn hơn hoặc bằng 0 với mọi x
=> | x - 0,4 | + 2,5 lớn hơn hoặc bằng 2,5
Dấu "=" xảy ra <=> | x - 0,4 | = 0 <=> x = 0,4
Vậy minA = 2,5 <=> x = 0,4
Vì \(\left|2x-\frac{1}{2}\right|\ge0\forall x\)\(\Rightarrow-\frac{3}{2}+\left|2x-\frac{1}{2}\right|\ge-\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-\frac{1}{2}\right|=0\Leftrightarrow2x=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
Vậy minB = - 3/2 <=> x = 1/4
+ Ta có: \(A=\left|x-0,4\right|+2,5\)
Vì \(\left|x-0,4\right|\ge0\forall x\)\(\Rightarrow\)\(\left|x-0,4\right|+2,5\ge2,5\forall x\)
\(\Rightarrow\)\(A_{min}=2,5\)
Dấu "=" xảy ra khi và chỉ khi: \(\left|x-0,4\right|=0\)
\(\Leftrightarrow x-0,4=0\)
\(\Leftrightarrow x=0,4\)
Vậy \(A_{min}=2,5\)\(\Leftrightarrow\)\(x=0,4\)
ai giúp với plsss