K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

\(A=\sqrt{x^2-2x+5}=\sqrt{x^2-2x+1+4}\)

\(=\sqrt{\left(x-1\right)^2+4}\ge\sqrt{4}=2\)

Đẳng thức xảy ra khi x=1

29 tháng 6 2017

Ta có  x\(^2\)- 2x +5 

= x\(^2\)- 2x 1 + 1 +4

= (x-1)\(^2\)+ 4 >= 4 với mọi x

hay x\(^2\)- 2x + 5 >= 4 với mọi x

   => \(\sqrt{x^2-2x+5}\)>= 2

 Vậy min A=2 <=> x-1=0

                     <=> x=1 

19 tháng 9 2020

\(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(=\sqrt{\left(x-1\right)^2}+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-4\right|+\left(\left|x-1\right|+\left|x-6\right|\right)\)

\(=\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\)

Ta có \(\hept{\begin{cases}\left|x-4\right|\ge0\forall x\\\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\end{cases}}\)

=> \(\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\ge5\forall x\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-4=0\\\left(x-1\right)\left(6-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)

=> MinA = 5 <=> x = 4

19 tháng 9 2020

Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(\Rightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-4\right|+\left|x-1\right|+\left|x-6\right|\)

Xét \(\left|x-1\right|+\left|x-6\right|\)ta có: 

\(\left|x-1\right|+\left|x-6\right|=\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\)(1)

Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(6-x\right)\ge0\)

TH1: Nếu \(\hept{\begin{cases}x-1< 0\\6-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\6< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>6\end{cases}}\)( vô lý )

TH2: Nếu \(\hept{\begin{cases}x-1\ge0\\6-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\6\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le6\end{cases}}\Leftrightarrow1\le x\le6\)

mà \(\left|x-4\right|\ge0\)(2)

Từ (1) và (2) \(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-4=0\\1\le x\le6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)

Vậy \(minA=5\)\(\Leftrightarrow x=4\)

19 tháng 9 2020

Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

    \(\Leftrightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

    \(\Leftrightarrow A=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)

Vì \(\left|a\right|=\left|-a\right|\) \(\Rightarrow\)\(\left|x-6\right|=\left|6-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có:

     \(\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=5\)

      \(\Rightarrow\)\(A\ge\left|x-4\right|+5\)

Vì \(\left|x-4\right|\ge0\forall x\)\(\Rightarrow\)\(\left|x-4\right|+5\ge5\forall x\)

      \(\Rightarrow\)\(A\ge5\)

Dấu "=" xảy ra khi:  \(\hept{\begin{cases}\left(x-1\right)\left(6-x\right)>0\\x-4=0\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}1< x< 6\\x=4\end{cases}}\)

                           \(\Rightarrow x=4\)

Vậy \(A_{min}=5\)\(\Leftrightarrow\)\(x=4\)

29 tháng 6 2016

Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath

\(\sqrt{x}-2>=-2\)

=>\(P=\dfrac{5}{\sqrt{x}-2}< =-\dfrac{5}{2}\)

Dấu = xảy ra khi x=0

Vậy: Giá trị lớn nhất của P là -5/2 khi x=0

10 tháng 7 2021

undefined

23 tháng 2 2017

Ta có: x+3y=5 => x=5-3y 

Lại có: A=x^2+y^2+16y+2x

=> A=(5-3y)^2+y^2+16y+2(5-3y)=25-30y+9y^2+y^2+16y+10-6y

       =35+10y^2-20y=10(y^2-2y+1)+25=10(y-1)^2+25

Ta thấy: 10(y-1)^2 luôn lớn hơn hoặc bằng 0 với mọi y

=> A luôn lớn hơn hoặc bằng 25 với mọi y

Dấu "=" xảy ra <=> 10(y-1)^2=0 <=> y=1 => x=5-3*1=2

Vậy minA=25 <=> x=2; y=1