Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A=|x−2016|+2017|x−2016|+2018 =|x−2016|+2018−1|x−2016|+2018 =1−1|x−2016|+2018
Vì |x−2016|≥0⇒|x−2016|+2018≥2018⇒1|x−2016|+2018 ≤12018
=>A=1−1|x−2016|+2018 ≥20172018
=>Amin=20172018 <=>|x-2016|=0<=>x-2016=0<=>x=2016
Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)
Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)
\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)
\(A=1-\frac{1}{\left|x-2017\right|+2019}\)
A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất
khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất
khi \(\left|x-2017\right|+2019\)nhỏ nhất
mà |x - 2017| \(\ge0\)
=> |x - 2017| + 2019 \(\ge2019\)
Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017
Tìm giá trị nhỏ nhất của:P=/x-2016/+/x-2017/.
Áp dụng BĐT /a+b/. ≤/a/+/b/. ⇒ P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1.
Vậy GTNN của P là 1 <=> 0. ≤(x-2016)(2017-x) <=> 2016. ≤x. ≤2017.
Để A nn thì 2016 - x nn và thuộc N
Suy ra 2016 - x=0
=>x= 2016
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy !!!
GTNN của A bằng -1 với x = 2018.
\(A=|x-2017|+|x-2018|\)
\(=|2017-x|+|x-2018|\ge|2017-x+x-2018|\)
Hay \(A\ge1\)
Dấu'=' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}2017-x\ge0\\x-2018\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2017-x< 0\\x-2018< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2018\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x>2017\\x< 2018\end{cases}}\)
\(\Leftrightarrow2017< x< 2018\)
Vậy MIN A=1 \(\Leftrightarrow2017< x< 2018\)