Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì | x - 2001| > hoặc = 2001 - x
| x - 1| > hoặc = x - 1
Nên A = |x - 2001| + | x - 1| > hoặc = 2001 - x + x - 1 = 2000
=> A > hoặc = 2002
=> Để A có giá trị nhỏ nhất <=> A = 2002
Khi đó 2001 - x > hoặc = 0 nên x < hoặc = 2001 (1)
x - 1 > hoặc = 0 nên x > hoặc = 1 (2)
Từ (1) và (2) => 1 < hoặc = x < hoặc = 2001
Vậy A có GTNN là 2000 <=> 1 < hoặc = x < hoặc = 2001
\(A=\left|x-2001\right|+\left|x-1\right|\)
\(=\left|x-2001\right|+\left|1-x\right|\)
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2001\right|+\left|1-x\right|\ge\left|x-2001+1-x\right|=2000\)
\(\Rightarrow A\ge2000\)
Dấu = khi \(\begin{cases}x-2001\le0\\x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\le2001\\x\ge1\end{cases}\)\(\Rightarrow1\le x\le2001\)
Vậy MinA=2000 khi \(1\le x\le2001\)
\(A=\left|x+2014\right|+\left|x-1\right|=\left|x+2014\right|+\left|1-x\right|\)
\(\ge\left|x+2014-x+1\right|=2015\)
Dấu "=" xảy ra <=> \(\left(x+2014\right)\left(1-x\right)\ge0\)
TH1: x + 2014 \(\ge\)0 và 1- x \(\ge\)0
<=> x \(\ge\)-2014 và x \(\le\)1
<=> \(-2014\le x\le1\)
TH2: x + 2014 \(\le\)0 và 1 - x \(\le\)0
<=> x \(\le\)-2014 và x\(\ge\)1
==> loại
Vậy GTNN của A = 2015 tại \(-2014\le x\le1\)
Ta có \(\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|\text{b }\right|\ge\left|a+b\right|\) dấu đẳng thức xảy ra khi \(ab\ge0\)
Khi đó ta có \(\left|2002-x\right|+\left|x-2001\right|\ge\left|x-2001+2002-x\right|=\left|1\right|=1\)
Vậy min của biểu thức trên bằng 1 khi \(\left(x-2001\right)\left(2002-x\right)\ge0\) tức là \(2001\le x\le2002\)
\(P=\left|x-1\right|+\left|x-2017\right|+\left|x-2018\right|\\ \Leftrightarrow P=\left|x-1\right|+\left|2018-x\right|+\left|x-2017\right|\\ \Leftrightarrow P=2017+\left|x-2017\right|\\ \Leftrightarrow P\ge2017\)
+Dấu ''='' xảy ra khi
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\le2018\\x=2017\end{matrix}\right.\)
\(\Leftrightarrow x=2017\)
+Vậy \(P_{min}=2017\) khi \(x=2017\)
phá đầu giá trị tuyệt đối ra, có công thức /a/ +/b/ > hoặc bằng a+b đấy chứng minh rồi áp dụng vào