\(A=x^2+2x+3\)

\(B=-x^2+8x+1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=x^2+2x+3\)

=\(\left(x+1\right)^2+2\)

Với mọi x thì \(\left(x+1\right)^2>=0\)

=>\(\left(x+1\right)^2+2\)>=2

Để A=2 thì

\(\left(x+1\right)^2=0\)

=>\(x+1=0\)

=>\(x=-1\)

Vậy...

Các câu sau tương tự

9 tháng 9 2017

bạn giúp mik câu B vs C luôn nha

Mik tick cho

Xin bạn đó

25 tháng 8 2016

1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)

Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)

Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5

2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)

\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)

Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của B là 8 khi x = 2

2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)

\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)

Đẳng thức xảy ra khi: 4x + 1 = 0  => x = -0,25

Vậy giá trị lớn nhất của C là 5 khi x = -0,25

9 tháng 11 2019

\(A=\frac{2x^2-16x+33}{x^2-8x+17}=\frac{2\left(x^2-8x+17\right)-1}{x^2-8x+17}=2-\frac{1}{x^2-8x+17}\)

để A nhỏ nhất => \(\frac{1}{x^2-8x+17}\) lớn nhất

\(x^2-8x+17=\left(x-4\right)^2+1\ge1\)=> \(\frac{1}{x^2-8x+17}\le\frac{1}{1}=1\)

=> A ≥ 2 - 1 = 1

dấu ''='' xảy ra khi x = 4

14 tháng 11 2017

a, N = 2 + 6/x^2-8x+22

Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3

Dấu "=" xảy ra <=> x-4 = 0 <=> x=4

Vậy Max N =3 <=> x=4

k mk nha

14 tháng 11 2017

Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !

8 tháng 8 2017

1.

A =\(2x^2-8x+10=\left(x^2-2x+1\right)+\left(x^2-6x+9\right)\)

\(=\left(x-1\right)^2+\left(x-3\right)^2=\left(x-1\right)^2+\left(3-x\right)^2\)

Có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(3-x\right)^2\ge0\end{matrix}\right.\forall x\)

<=> \(\left|x-1\right|+\left|x-3\right|\)

Áp dụng bđt |a| + |b| \(\ge\) |a + b| có:

\(\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)

đẳng thức xảy ra khi \(1\le x\le3\)

Vậy ................

8 tháng 8 2017

1.

a)

\(A=2x^2-8x+10=2\left(x^2-4x+4\right)+2\ge=2\left(x-2\right)^2+2\ge2\)

Đẳng thức xảy ra \(\Leftrightarrow x=2\)

b)

\(B=3x^2-x+20=3\left(x^2-\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{239}{12}=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{239}{12}\ge\dfrac{239}{12}\)

Đẳng thức xảy ra \(\Leftrightarrow x=\dfrac{1}{6}\)

c) ĐK: \(x\ne-1\)

\(C=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4x^2+8x+4}\)

\(=\dfrac{3x^2+6x+3}{4x^2+8x+4}+\dfrac{x^2-2x+1}{4x^2+8x+4}\)

\(=\dfrac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}\ge\dfrac{3}{4}\)

Đẳng thức xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

a: \(A=x^2-3x+\dfrac{9}{4}-\dfrac{5}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\)

Dấu '=' xảy ra khi x=3/2

c: \(x^2-x+2=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\)

=>\(\dfrac{3}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}< =3:\dfrac{7}{4}=\dfrac{12}{7}\)

=>C>=-12/7

Dấu '=' xảy ra khi x=1/2

4 tháng 11 2018

a, \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)

Dấu "=" xảy ra <=> x-2=0 <=> x=2

Vậy MinA = -18 khi x=2

b, \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra <=> x-1/2=0 <=> x=1/2

Vậy MaxB = 1/4 khi x=1/2

5 tháng 11 2018

a) \(A=2x^2-8x-10\)
\(=2\left(x^2-4x-5\right)\)

\(=2\left(x^2-2.x.2+2^2-2^2-5\right)\)
\(=2\left[\left(x-2\right)^2-9\right]\)
\(=2\left(x-2\right)^2-18\)

Vì \(2\left(x-2\right)^2\ge0\forall x\)

Nên \(2\left(x-2\right)^2\ge-18\)

Hay \(A\ge-18\)

Vậy gtnn của A là -18 khi \(2\left(x-2\right)^2=0\)

\(x-2=0\)

\(x=2\)

b) \(B=x-x^2\)

\(=-x^2-x\)

\(=-\left(x^2-x\right)\)

\(=-\text{[}x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\text{]}\)

\(=-\text{[}\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\text{]}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x \)
Vậy gtln của B là \(\frac{1}{4}\)khi \(x-\frac{1}{2}=0\)

\(x=\frac{1}{2}\)