\(|x+1,5|-8\)

b)B=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

\(A=\left|4x-3\right|+\left|5y+7,5\right|+10\)

Mà \(\left|4x-3\right|\ge0\)với mọi x

\(\left|5y+7,5\right|\ge0\)với mọi y

\(\Rightarrow A\)có GTNN là 10

Để A có GTNN thì :

\(4x-3=0\)                           \(5y+7,5=0\)

\(4x=3\)                                                  \(5y=-7,5\)

\(x=\frac{3}{4}\)                                                     \(y=-1,5\)

28 tháng 9 2018

\(B=\frac{5,8}{\left|2,5-x\right|+5,8}\)

Mà \(\left|2,5-x\right|\ge0\)

\(\Rightarrow\)GTNN \(\left|2,5-x\right|+5,8=5,8\)

Để B có GTLN \(\Rightarrow2,5-x=0\)

\(\Rightarrow x=2,5\)

6 tháng 9 2020

Dài đấy :))

a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)

\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)

\(\Leftrightarrow\left|x-1\right|+8=9\)

\(\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)

\(\Leftrightarrow\left(x-2\right)^2=36\)

\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)

c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))

\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)

\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)

\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)

\(\Leftrightarrow\left(x-5\right)^2=36\)

\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)

d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)

\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)

\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)

\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)

Vậy ta xét hai trường hợp sau :

1. \(x\ge-\frac{3}{16}\)

(*) <=>\(7x-2=4x+\frac{3}{4}\)

\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)

\(\Leftrightarrow3x=\frac{11}{4}\)

\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)

2. \(x< -\frac{3}{16}\)

(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)

\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)

\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)

\(\Leftrightarrow11x=\frac{5}{4}\)

\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)

Vậy x = 11/12

e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)

\(\Leftrightarrow x+1=4040\)

\(\Leftrightarrow x=4039\)

8 tháng 9 2020

ĐKXD là gì vậy

2 tháng 8 2018

a) Vì : \(\left(x+1\right)^2\ge0\forall x\)

             \(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)

Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)

29 tháng 1 2019

b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy....

Câu 2:

a) Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Rightarrow x^4+3x^2+2\ge2\forall x\)

Dấu '=' xảy ra khi

\(x^4+3x^2=0\Leftrightarrow x^2\left(x^2+3\right)=0\)

\(x^2\ge0\forall x\)

nên \(x^2+3\ge3>0\forall x\)

Do đó: \(x^2=0\Leftrightarrow x=0\)

Vậy: GTNN của biểu thức \(A=x^4+3x^2+2\) là 2 khi x=0

b)\(B=\left(x^4+5\right)^2\)

Ta có: \(x^4\ge0\forall x\)

\(\Rightarrow x^4+5\ge5\forall x\)

\(\Rightarrow\left(x^4+5\right)^2\ge25\forall x\)

Dấu '=' xảy ra khi

\(x^4+5=5\Leftrightarrow x^4=0\Leftrightarrow x=0\)

Vậy: GTNN của biểu thức \(B=\left(x^4+5\right)^2\) là 25 khi x=0

c) \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left(y+2\right)^2\ge0\forall y\)

Do đó: \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2-2\ge-2\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy: GTNN của biểu thức \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\) là -2 khi x=1 và y=-2

Câu 3:

a) \(A=5-3\left(2x-1\right)^2\)

Ta có: \(A=5-3\left(2x-1\right)^2=-3\left(2x-1\right)^2+5\)

Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi

\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy: GTLN của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\frac{1}{2}\)

b) \(B=\frac{1}{2\left(x-1\right)^2+3}\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)

\(\Rightarrow\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\forall x\)

Dấu '=' xảy ra khi

\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: GTLN của biểu thức \(B=\frac{1}{2\left(x-1\right)^2+3}\)\(\frac{1}{3}\) khi x=1

c) \(C=\frac{x^2+8}{x^2+2}\)

Ta có: \(C=\frac{x^2+8}{x^2+2}=\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\forall x\)

\(\Rightarrow\frac{6}{x^2+2}\le3\forall x\)

\(\Rightarrow1+\frac{6}{x^2+2}\le4\forall x\)

Dấu '=' xảy ra khi

\(x^2=0\Leftrightarrow x=0\)

Vậy: Giá trị lớn nhất của biểu thức \(C=\frac{x^2+8}{x^2+2}\) là 4 khi x=0