K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a) Ta thấy : \(\left(a^2-9\right)^4\ge0\)

\(\Leftrightarrow A=100-\left(a^2-9\right)^4\le100\)

Dấu " = " xảy ra :

\(\Leftrightarrow a^2-9=0\)

\(\Leftrightarrow a^2=9\)

\(\Leftrightarrow a\in\left\{3;-3\right\}\)

Vậy \(Max_A=100\Leftrightarrow a\in\left\{3;-3\right\}\)

b) \(B=-25-2\left|x^2-2\right|-3\left|y+1\right|\)

Ta thấy : \(\left|x^2-2\right|\ge0\)

               \(\left|y+1\right|\ge0\)

\(\Leftrightarrow25+2\left|x^2-2\right|+3\left|y+1\right|\ge25\)

\(\Leftrightarrow B=-25-2\left|x^2-2\right|-3\left|y+1\right|\le25\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x^2-2=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{\sqrt{2};-\sqrt{2}\right\}\\y=-1\end{cases}}\)

Vậy \(Max_B=25\Leftrightarrow\left(x;y\right)\in\left\{\left(\sqrt{2};-1\right);\left(-\sqrt{2};-1\right)\right\}\)

5 tháng 4 2020

Bài 1 :

a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)

                   \(\left|y-2\right|\ge0\)

\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)

Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)

b) Ta thấy : \(B=x^2+4x-100\)

\(=\left(x+4\right)^2-104\ge-104\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy \(Min_B=-104\Leftrightarrow x=-4\)

c) Ta thấy : \(C=\frac{4-x}{x-3}\)

\(=\frac{3-x+1}{x-3}\)

\(=-1+\frac{1}{x-3}\)

Để C min \(\Leftrightarrow\frac{1}{x-3}\)min

\(\Leftrightarrow x-3\)max

\(\Leftrightarrow x\)max

Vậy để C min \(\Leftrightarrow\)\(x\)max

p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình

Bài 2 : 

a) Ta thấy : \(x^2\ge0\)

                  \(\left|y+1\right|\ge0\)

\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)

\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)

b) Để B max

\(\Leftrightarrow\left(x+3\right)^2+2\)min

Ta thấy : \(\left(x+3\right)^2\ge0\)

\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)

c) Ta thấy : \(\left(x+1\right)^2\ge0\)

\(\Leftrightarrow x^2+2x+1\ge0\)

\(\Leftrightarrow-x^2-2x-1\le0\)

\(\Leftrightarrow C=-x^2-2x+7\le8\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(Max_C=8\Leftrightarrow x=-1\)

5 tháng 4 2020

a) \(A=\left(x-1\right)^2\ge0\)

Dấu " = " xảy ra :

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy \(Min_A=0\Leftrightarrow x=1\)

b) Ta thấy : \(\left(x^2-9\right)^2\ge0\)

                   \(\left|y-2\right|\ge0\)

\(\Leftrightarrow B=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)

Vậy \(Min_B=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)

c) Ta thấy : \(x^4\ge0\)

                   \(x^2\ge0\)

\(\Leftrightarrow C=x^4+3x^2+2\ge2\)

Dấu " = " xảy ra ;

\(\Leftrightarrow x=0\)

Vậy \(Min_C=2\Leftrightarrow x=0\)

d) \(D=x^2+4x-100\)

\(\Leftrightarrow D=x^2+4x+4-104\)

\(\Leftrightarrow D=\left(x+2\right)^2-104\ge-104\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy \(Min_D=-104\Leftrightarrow x=-2\)

22 tháng 5 2017

a ) \(A=-x^2+4x+25=-\left(x^2-4x+4\right)+29=-\left(x-2\right)^2+29\le29\forall x\)

b ) \(B=-x^2-4x+15=-\left(x^2+4x+4\right)+19=-\left(x+2\right)^2+19\le19\forall x\)

c ) \(C=-x^2+10x-17=-\left(x^2-10x+25\right)+8=-\left(x-5\right)^2+8\le8\forall x\)

c ) \(D=-4x^2+4x+9=-\left(4x^2-4x+1\right)+10=-\left(2x-1\right)^2+10\le10\forall x\)

29 tháng 8 2017

I

Dễ mà kb vs mk đi

29 tháng 8 2017

giải giúp mình bài 1 rồi mình addfriend cho

a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)

b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)