Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhìu dữ
a)3/2
b)-1/3
c)-5/6
d)0
e)-1/2
Bài 2
a=3
b=1/2
c=-1/3
d=0
e=9
f=-2/3
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
Bài 1 :
a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)
Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)
b) Ta thấy : \(B=x^2+4x-100\)
\(=\left(x+4\right)^2-104\ge-104\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy \(Min_B=-104\Leftrightarrow x=-4\)
c) Ta thấy : \(C=\frac{4-x}{x-3}\)
\(=\frac{3-x+1}{x-3}\)
\(=-1+\frac{1}{x-3}\)
Để C min \(\Leftrightarrow\frac{1}{x-3}\)min
\(\Leftrightarrow x-3\)max
\(\Leftrightarrow x\)max
Vậy để C min \(\Leftrightarrow\)\(x\)max
p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình
Bài 2 :
a) Ta thấy : \(x^2\ge0\)
\(\left|y+1\right|\ge0\)
\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)
\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)
b) Để B max
\(\Leftrightarrow\left(x+3\right)^2+2\)min
Ta thấy : \(\left(x+3\right)^2\ge0\)
\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)
c) Ta thấy : \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow x^2+2x+1\ge0\)
\(\Leftrightarrow-x^2-2x-1\le0\)
\(\Leftrightarrow C=-x^2-2x+7\le8\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy \(Max_C=8\Leftrightarrow x=-1\)
A(x)=\(x^2+2x=0\)
Suy ra x.(2+x)=0
Suy ra 2+x=0
Suy ra x=-2
Vậy -2 là nghiệm của đt A(x)
a)Ta thấy: \(x^2\ge0\forall x\Rightarrow-x^2\le0\forall x\)
Đẳng thức xảy ra khi \(-x^2=0\Leftrightarrow x=0\)
b)Ta thấy: \(x^2\ge0\forall x\Rightarrow2x^2\ge0\forall x\Rightarrow-2x^2\le0\forall x\)
Đẳng thức xảy ra khi \(-2x^2=0\Leftrightarrow x=0\)
c)Ta thấy: \(x^4\ge0\forall x\Rightarrow-x^4\le0\forall x\Rightarrow3-x^4\le0\forall x\)
Đẳng thức xảy ra khi \(-x^4=0\Leftrightarrow x=0\)
d)Ta thấy: \(x^2\ge0\forall x\Rightarrow x^2+2\ge2\forall x\)
\(\Rightarrow\dfrac{1}{x^2+2}\le\dfrac{1}{2}\forall x\)
Đẳng thức xảy ra khi \(x^2=0\Leftrightarrow x=0\)
d)Ta thấy: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow\dfrac{1}{\left(x-1\right)^2+4}\le\dfrac{1}{4}\forall x\)
Đẳng thức xảy ra khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
P/s: Mấy bài cỡ này bn nên tự làm đi, mình hứa từ giờ mấy bài cỡ này ko làm nữa (The one and only)