Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7\sqrt{2x}-2\sqrt{2x}-4=3\sqrt{2x}\)
\(7\sqrt{2x}-2\sqrt{2x}-3\sqrt{2x}=4\)
\(2\sqrt{2x}=4\)
\(\sqrt{2x}=\frac{4}{2}=2=\sqrt{4}\)
\(\rightarrow2x=4\rightarrow x=2\)
\(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
\(\sqrt{\left(x-3\right)^2}=\sqrt{1+2.1\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(\sqrt{\left(x-3\right)^2}=\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(\left|x-3\right|=1+\sqrt{3}\)
Chia 2 TH
Với x lớn hơn hoặc bằng 3 => \(x=4+\sqrt{3}\)
Với x bé hơn 3 => \(x=2+\sqrt{3}\)
\(1,\sqrt{\left(-0,3\right)^2}=\sqrt{0,09}=0,3\)
\(2,-\frac{1}{2}\sqrt{\left(0,3\right)^2}=-\frac{1}{2}.0,3=-0,15\)
\(3,\sqrt{a^{10}}=\sqrt{\left(a^5\right)^2}=a^5\left(a\ge0\right)\)
\(4,\sqrt{\left(2-x\right)^2}=\left|2-x\right|=2-x\left(x\le2\right)\)
\(5,\sqrt{x^2+2x+1}=\sqrt{\left(x+1\right)^2}=\left|x+1\right|\)
\(6,\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=\sqrt{2}-1\)(Vì \(1< \sqrt{2}\))
\(7,\sqrt{11+6\sqrt{2}}=\sqrt{9+6\sqrt{2}+2}=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
\(8,\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)\)
\(=-2\)
\(9,\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}+\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1+\sqrt{5}-1\)
\(=2\sqrt{5}\)
Câu 3
a, ĐKXĐ: x>0, x\(\ne\)4
M=( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\)). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)
M= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b, Thay x= \(6+4\sqrt{2}\) ( x>0, x\(\ne\)4) ta có:
M= \(\dfrac{\sqrt{6+4\sqrt{2}}}{\sqrt{6+4\sqrt{2}}-2}\)
= \(\dfrac{\sqrt{\left(\sqrt{2}+2\right)^2}}{\sqrt{\left(\sqrt{2}+2\right)^2-2}}\) = \(\dfrac{\sqrt{2}+2}{\sqrt{2}+2-2}\)
= \(\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{\sqrt{2}}\) = \(1+\sqrt{2}\)
Vậy khi x= \(6+4\sqrt{2}\) thì M= \(1+\sqrt{2}\)
c, Để M<1 <=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 1\)
<=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)
<=> \(\dfrac{2}{\sqrt{x}-2}< 0\)
Vì 2>0 <=> \(\sqrt{x}-2< 0\)
<=> \(\sqrt{x}< 2\)
<=> x<4
Vậy để M<1 thì 0<x<4
<=>
Câu 2
a, \(\sqrt{3x+2}=5\) (x\(\ge\dfrac{-2}{3}\))
<=> \(\sqrt{3x+2}=\sqrt{25}\)
<=> 3x+2=25
<=> 3x= 23
<=> x=\(\dfrac{23}{3}\)
Vậy S= \(\left\{\dfrac{23}{3}\right\}\)
a, Ta có: \(\sqrt[3]{2x+1}+\sqrt[3]{x}=1\)
↔ \(\left(\sqrt[3]{2x+1}+\sqrt[3]{x}\right)^3=1^3\)
↔\(2x+1+x+3\sqrt[3]{\left(2x+1\right)x}\left(\sqrt[3]{2x+1}+\sqrt[3]{x}\right)=1\)
↔\(3x+1+3\sqrt[3]{\left(2x+1\right)x}=1\)
↔ \(x+\sqrt[3]{\left(2x+1\right)x}=0\)
↔\(\sqrt[3]{\left(2x+1\right)x}=-x\)
↔ \(\left(2x+1\right)x=-x^3\)
↔\(x^3+2x^2+x=0\)
↔ \(x\left(x+1\right)^2=0\)
↔ \(x=0\) hoặc \(x+1=0\)
↔ \(x=0\) hoặc \(x=-1\)
b,ĐKXĐ: \(x\) khác 0, \(x\) >\(\frac{2}{3}\)
Áp dụng bất đẳng thức Cô-si cho 2 số dương \(\frac{x}{\sqrt{3x-2}}\) và \(\frac{\sqrt{3x-2}}{x}\) ta được:
\(\frac{x}{\sqrt{3x-2}}+\frac{\sqrt{3x-2}}{x}\ge2\sqrt{\frac{x}{\sqrt{3x-2}}.\frac{\sqrt{3x-2}}{x}}\)
↔\(\frac{x}{\sqrt{3x-2}}+\frac{\sqrt{3x-2}}{x}\ge2\)
Dấu "=" xảy ra\(\Leftrightarrow\) \(x=1\) hoặc \(x=2\)
Vậy tập nghiệm của pt là S={1;2}
Bài 2:
a, Ta có
\(3\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}\)
= \(3\left|-2\right|+\left|-5\right|\)
=\(6+5\)
= 11
Vậy \(3\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}=11\)
b, Ta có
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}\)
= \(\sqrt{5+2\sqrt{5}+1}-\sqrt{5}\)
= \(\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}\)
= \(\left|\sqrt{5}+1\right|-\sqrt{5}\)
= \(\sqrt{5}+1-\sqrt{5}=1\)
Vậy \(\sqrt{6+2\sqrt{5}}-\sqrt{5}=1\)
Áp dụng BĐT bu - nhi -a cốp - xki
ta có \(B^2=\left(1.\sqrt{2x-3}+1.\sqrt{x-1}+1.\sqrt{7-3x}\right)^2\le\left(1^2+1^2+1^2\right)\left(2x-3+x-1+7-3x\right)\)
<=> \(b^2\le3.3=9\Rightarrow B\le3\)
Dấu '=' xảy ra khi x = 2