Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x + y = t
=> A = t + 1
Ta có: x2+2xy+7(x+y)+2y2+10=0
<=> (x2 + 2xy + y2) + 7(x + y) + 10 + y2 = 0
<=> (x + y)2 + 7(x + y) + 10 = - y2
<=> t2 + 7t + 10 = - y2 \(\le\)0
<=> \(-5\le t\le-2\)
<=> \(-4\le t+1\le-1\)
<=> \(-4\le A\le-1\)
Vậy GTLN là A = - 1dấu bằng xảy ra khi x = - 2, y = 0; GTNN là A = - 4 dấu bằng xảy ra khi x = - 5, y = 0
Xét \(\Delta=\left(m^2+m+1\right)^2+4\left(m^2-m+1\right)>0\)
=> PT luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{m^2+m+1}{m^2-m+1}\\x_1x_2=\frac{-1}{m^2-m+1}\end{cases}}\)
a, \(P=\frac{-1}{m^2-m+1}=\frac{-1}{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{-1}{\frac{3}{4}}=\frac{-4}{3}\)
Dấu "=" xảy ra khi \(m=\frac{1}{2}\)
b,Tìm GTNN : lấy S trừ 2
Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)
khi đó:
\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)
\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy max P = 3 tại a = b = c =1.
Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-
Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra
\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:
\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Đây là bất đẳng thức Schur bậc 3, ta có đpcm.
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
Lời giải:
Áp dụng BĐT AM-GM:
$x^6+\frac{1}{8}+\frac{1}{8}\geq 3\sqrt[3]{\frac{x^6}{64}}=\frac{3}{4}x^2$
$y^6+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}y^2$
Cộng 2 BĐT trên và thu gọn theo vế thì:
$A+\frac{1}{2}\geq \frac{3}{4}(x^2+y^2)$
$\Leftrightarrow A+\frac{1}{2}\geq \frac{3}{4}$
$\Leftrightarrow A\geq \frac{1}{4}$
--------------------
Lại có:
$x^2+y^2=1\Rightarrow x^2\leq 1; y^2\leq 1\Rightarrow x^4\leq 1; y^4\leq 1$
Khi đó:
$x^6\leq x^2; y^6\leq y^2$
$\Rightarrow x^6+y^6\leq x^2+y^2$
$\Rightarrow A\leq 1$
Vậy $A_{\min}=\frac{1}{4}; A_{\max}=1$
Lời giải:
Tìm giá trị nhỏ nhất
Ta thấy: \(x^2+y^2-2xy=(x-y)^2\geq 0\)
\(\Rightarrow x^2+y^2\geq 2xy\)
\(\Rightarrow 2(x^2+y^2)\geq (x+y)^2\)
\(\Leftrightarrow 2A\geq 1\Rightarrow A\geq \frac{1}{2}\)
Vậy \(A_{\min}=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Tìm GTLN:
Thay $y=1-x$ ta có: \(A=x^2+(1-x)^2=1+2x^2-2x\)
\(=1+2x(x-1)\)
Vì $y\geq 0$ nên \(x=1-y\leq 1\)
Vậy \(0\leq x\leq 1\Rightarrow x(x-1)\leq 0\)
\(\Rightarrow A=1+2x(x-1)\leq 1+2.0=1\)
Vậy \(A_{\max}=1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.
Lời giải:
Áp dụng BĐT AM-GM:
$A=x(1-x^2)=x(1-x)(1+x)=(1+\sqrt{3})x.(2+\sqrt{3})(1-x)(1+x).\frac{1}{(\sqrt{3}+1)(\sqrt{3}+2)}$
$=(x+x\sqrt{3})[2+\sqrt{3}-(2+\sqrt{3})x](1+x).\frac{1}{(\sqrt{3}+1)(\sqrt{3}+2)}$
\(\leq \left[\frac{x+x\sqrt{3}+2+\sqrt{3}-(2+\sqrt{3})x+1+x}{3}\right]^3.\frac{1}{(1+\sqrt{3})(\sqrt{3}+2)}\\ =\frac{(\sqrt{3}+1)^3}{3\sqrt{3}}.\frac{1}{(\sqrt{3}+1)(\sqrt{3}+2)}=\frac{2}{3\sqrt{3}}\)
Vậy $A_{\max}=\frac{2}{3\sqrt{3}}$. Giá trị này đạt tại $x=\frac{1}{\sqrt{3}}$