Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a=\lim\limits_{x\rightarrow+\infty}\frac{\frac{1}{x}+\frac{2}{\sqrt{x}}-1}{1+\frac{3}{x}}=-1\)
\(b=\lim\limits_{x\rightarrow+\infty}\frac{1+\frac{3}{x^2}-\frac{1}{x^3}}{\frac{1}{\sqrt{x}}+\frac{1}{x^2}}=\frac{1}{0}=+\infty\)
\(c=\lim\limits_{x\rightarrow-\infty}\frac{1-2\sqrt{\frac{1}{x^2}-\frac{1}{x}}}{\frac{1}{x}-1}=\frac{1}{-1}=-1\)
Bài 2:
\(a=\lim\limits_{x\rightarrow0}\frac{1-cosx}{1-cos3x}=\lim\limits_{x\rightarrow0}\frac{sinx}{3sin3x}=\lim\limits_{x\rightarrow0}\frac{\frac{sinx}{x}}{9.\frac{sin3x}{3x}}=\frac{1}{9}\)
\(b=\lim\limits_{x\rightarrow0}\frac{cotx-sinx}{x^3}=\frac{\infty}{0}=+\infty\)
\(c=\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}\)
Mà \(\left|sinx\right|\le1\Rightarrow\left|\frac{sinx}{2x}\right|\le\frac{1}{\left|2x\right|}\)
Mà \(\lim\limits_{x\rightarrow\infty}\frac{1}{2\left|x\right|}=0\Rightarrow\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}=0\)
a) = = -4.
b) = = (2-x) = 4.
c) =
= = = .
d) = = -2.
e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.
f) = = -∞, vì > 0 với ∀x>0.
\(\lim\limits_{x\rightarrow-\infty}\frac{17}{x^2+4}=\frac{17}{+\infty}=0\)
\(\lim\limits_{x\rightarrow-\infty}\frac{-2x^2+x-1}{x^2+3}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}-\frac{1}{x^2}}{1+\frac{3}{x^2}}=\frac{-2+0+0}{1+0}=-2\)
\(\lim\limits_{x\rightarrow-\infty}\frac{x+\sqrt{4x^2-1}}{-3x+2}=\lim\limits_{x\rightarrow-\infty}\frac{x-x\sqrt{4-\frac{1}{x^2}}}{x\left(-3+\frac{2}{x}\right)}=\lim\limits_{x\rightarrow-\infty}\frac{1-\sqrt{4-\frac{1}{x^2}}}{-3+\frac{3}{x}}=\frac{1-2}{-3}=\frac{1}{3}\)
\(lim\left(x\rightarrow-\infty\right)\left[x\left(1-\sqrt[3]{\frac{1}{x^3}-1}\right)\right]=lim\left(x\rightarrow-\infty\right)\left[x.2\right]=-\infty\)