Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=\frac{x}{x^2+2}\)
với x > 0, áp dụng bđt Cauchy ta có :
\(x^2+2\ge2\sqrt{x^2+2}=2x\sqrt{2}\)
=> \(\frac{1}{x^2+2}\le\frac{1}{2x\sqrt{2}}\)
=> \(\frac{x}{x^2+2}\le\frac{1}{2\sqrt{2}}\)( x > 0 nên khi nhân vào cả hai vế bđt giữ chiều )
hay \(F\le\frac{1}{2\sqrt{2}}\)
đẳng thức xảy ra khi \(x=\sqrt{2}\)
vậy maxF = \(\frac{1}{2\sqrt{2}}\), đạt được khi \(x=\sqrt{2}\)
để pt có 2 nghiệm phân biệt thì: đenta > 0
mà ddeenta = m2 - 6m - 7 > 0
giải ra ta đc: m<-1 hay m>7 (1)
áp dụng hệ thức vi-et đc x1 + x2 = m-1 và x1.x2= m+2
kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3
bđt trên (=) (x12+x22)/x12.x22 - 1 > 0
thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2 và m<-7/16
kết hợp vs (1) =) m<-1 và m khác -2
f(x) = x3 +3/x = x3 + 1/x +1/x +1/x
cô si 4 số làm mất x là xong
Ta có: \(\dfrac{98x^2-4}{x-2}=0\)
\(\Leftrightarrow98x^2-4=0\)
hay \(x=\sqrt{\dfrac{4}{98}}=\dfrac{\sqrt{2}}{7}\)