Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x#0
Ta có: \(T=8x^2-4x+\frac{1}{4x^2}+15\)
<=> \(T=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+14\)
Áp dụng BĐT \(a+\frac{1}{a}\ge2\)cho số a thuộc N*,ta có:
\(T\ge2+\left(2x-1\right)^2+14\)
=> Min T=16 khi và chỉ khi \(x=\frac{1}{2}\)
\(8x^2-4x+\frac{1}{4x^2}+15\)
\(=\left(4x^2-4x+1\right)+\left(4x^2-2+\frac{1}{4x^2}\right)+15-1+2\)
\(=4\left(x-\frac{1}{2}\right)^2+\left(2x-\frac{1}{2x}\right)^2+16\ge16\)
Vậy GTNN là 16 đạt được khi x = \(\frac{1}{2}\)
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
vừa với giải xong giờ lại giải lại :v
\(M=4x^2-3x+\frac{1}{4x}+2011\)
\(=\left(2x-1\right)^2+x+\frac{1}{4x}+2010\)
Theo bđt Cauchy : \(x+\frac{1}{4x}\ge2\sqrt[2]{\frac{1}{4}}=1\)
Suy ra : \(M\ge1+2010=2011\)
Vậy \(Min_M=2011\)khi \(x=\frac{1}{2}\)
\(M=\)như trên
\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)
\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)
Áp dụng BĐT Cô- si cho 2 số không âm, ta có:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)
=>minM=2011 khi x=\(\frac{1}{2}\)
bài này tìm GTLN thì có lẽ hay hơn -,-
C1: \(\frac{x^2-2x+1}{x^2+4x+5}=\frac{\left(x-1\right)^2}{x^2+4x+5}\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)
C2: Đặt \(A=\frac{x^2-2x+1}{x^2+4x+5}\)\(\Leftrightarrow\)\(\left(A-1\right)x^2+2\left(2A+1\right)x+5A-1=0\)
+) Nếu \(A=1\) thì \(x=-2\)
+) Nếu \(A\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta'\ge0\)
\(\Leftrightarrow\)\(\left(2A+1\right)^2-\left(A-1\right)\left(5A-1\right)\ge0\)
\(\Leftrightarrow\)\(4A^2+4A+1-5A^2+6A-1\ge0\)
\(\Leftrightarrow\)\(A^2-10A\le0\)
\(\Leftrightarrow\)\(\left(A-5\right)^2\le25\)
\(\Leftrightarrow\)\(0\le A\le10\)
\(\Rightarrow\)\(A\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)
\(N=\frac{4x+1}{4x^2+2}\)
<=> \(4x^2N+2N-4x-1=0\)
<=> \(4Nx^2-4x+2N-1=0\)(1)
+) Với N = 0 => x = -1/4
+) Với N khác 0
(1) có: \(\Delta\)= \(2^2-4N\left(2N-1\right)=-8N^2+4N+4\)
Để có min N thì (1) có nghiệm <=> \(\Delta\ge0\)
<=> \(-8N^2+4N+4\ge0\)
<=> \(-\frac{1}{2}\le N\le1\)
Do đó giá trị nhỏ nhất của N = -1/2
Khi đó: \(-\frac{1}{2}=\frac{4x+1}{4x^2+2}\)
<=> \(-2x^2-1=4x+1\)
<=> \(x^2+2x+1=0\)
<=> x = -1 thử lại thỏa mãn
Vậy gtnn của N = -1/2 đạt tại x = -1.