Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(P=sin^2x+cos^2x+cos^2x=1+cos^2x\)
Mà \(0\le cos^2x\le1\Rightarrow1\le P\le2\)
\(P_{min}=1\) khi \(cosx=0\)
\(P_{max}=2\) khi \(cosx=\pm1\)
b/ \(P=8sin^2x+3\left(1-2sin^2x\right)=3+2sin^2x\)
Mà \(0\le sin^2x\le1\Rightarrow3\le P\le5\)
\(P_{min}=3\) khi \(sinx=0\)
\(P_{max}=5\) khi \(sinx=\pm1\)
c/ \(P=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^2x-cos^2x=-cos2x\)
Mà \(-1\le cos2x\le1\Rightarrow-1\le P\le1\)
\(P_{min}=-1\) khi \(cos2x=1\)
\(P_{max}=1\) khi \(cos2x=-1\)
d/ \(P=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)
\(=1-3sin^2x.cos^2x=1-\frac{3}{4}\left(2sinx.cosx\right)^2=1-\frac{3}{4}sin^22x\)
Mà \(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le P\le1\)
\(P_{min}=\frac{1}{4}\) khi \(sin2x=\pm1\)
\(P_{max}=1\) khi \(sin2x=0\)
\(P=\frac{1-sin^2x.cos^2x}{cos^2x}-cos^2x=\frac{1}{cos^2x}-sin^2x-cos^2x\)
\(=1+tan^2x-\left(sin^2x+cos^2x\right)=1+tan^2x-1=tan^2x\)
\(M=\frac{2cos^2x-1}{sinx+cosx}=\frac{2cos^2x-\left(sin^2x+cos^2x\right)}{sinx+cosx}=\frac{cos^2x-sin^2x}{sinx+cosx}\)
\(\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}=cosx-sinx\)
\(A=3sin^2x+6cos^2=3sin^2x+6\left(1-sin^2x\right)\)
\(=6-3sin^2x\)
Do : \(0\le sin^2x\le1\Rightarrow\left\{{}\begin{matrix}6-3sin^2x\ge3\\6-3sin^2x\le6\end{matrix}\right.\)
Bài 1:
a)
\(\sin ^2x+\sin ^2x\cot^2x=\sin ^2x(1+\cot^2x)=\sin ^2x(1+\frac{\cos ^2x}{\sin ^2x})\)
\(=\sin ^2x.\frac{\sin ^2x+\cos^2x}{\sin ^2x}=\sin ^2x+\cos^2x=1\)
b)
\((1-\tan ^2x)\cot^2x+1-\cot^2x\)
\(=\cot^2x(1-\tan^2x-1)+1=\cot^2x(-\tan ^2x)+1=-(\tan x\cot x)^2+1\)
\(=-1^2+1=0\)
c)
\(\sin ^2x\tan x+\cos^2x\cot x+2\sin x\cos x=\sin ^2x.\frac{\sin x}{\cos x}+\cos ^2x.\frac{\cos x}{\sin x}+2\sin x\cos x\)
\(=\frac{\sin ^3x}{\cos x}+\frac{\cos ^3x}{\sin x}+2\sin x\cos x=\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin x\cos x}=\frac{(\sin ^2x+\cos ^2x)^2}{\sin x\cos x}=\frac{1}{\sin x\cos x}\)
\(=\frac{1}{\frac{\sin 2x}{2}}=\frac{2}{\sin 2x}\)
Bài 2:
Áp dụng BĐT Cauchy Schwarz ta có:
\(P=\frac{a^2}{\sqrt{a(2c+a+b)}}+\frac{b^2}{\sqrt{b(2a+b+c)}}+\frac{c^2}{\sqrt{c(2b+c+a)}}\)
\(\geq \frac{(a+b+c)^2}{\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}}(*)\)
Tiếp tục áp dụng BĐT Cauchy-Schwarz:
\((\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq (a+b+c)(2c+a+b+2a+b+c+2b+c+a)\)
\(\Leftrightarrow (\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq 4(a+b+c)^2\)
\(\Rightarrow \sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}\leq 2(a+b+c)(**)\)
Từ \((*); (**)\Rightarrow P\geq \frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\)
Dấu "=" xảy ra khi $a=b=c=1$
câu 1) ta có : \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2=x^4-2x^3+x^2+4x^2-4x+1\)
\(=\left(x^2-x+2\right)^2-3=\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right)^2-3\)
\(\Rightarrow\dfrac{1}{16}\le M\le61\)
\(\Rightarrow M_{min}=\dfrac{1}{16}\)khi \(x=\dfrac{1}{2}\) ; \(M_{max}=61\) khi \(x=3\)
câu 2) điều kiện xác định : \(0\le x\le2\)
đặt \(\sqrt{2x-x^2}=t\left(t\ge0\right)\)
\(\Rightarrow M=-t^2+4t+3=-\left(t-2\right)^2+7\)
\(\Rightarrow3\le M\le7\)
\(\Rightarrow M_{min}=3\)khi \(x=0\) ; \(M_{max}=7\) khi \(x=2\)câu 3) ta có : \(M=\left(x-2\right)^2+6\left|x-2\right|-6\ge-6\)
\(\Rightarrow M_{min}=-6\) khi \(x=2\)
4) điều kiện xác định \(-6\le x\le10\)
ta có : \(M=5\sqrt{x+6}+2\sqrt{10-x}-2\)
áp dụng bunhiacopxki dạng căn ta có :
\(-\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\le5\sqrt{x+6}+2\sqrt{10-x}\le\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\)
\(\Leftrightarrow-4\sqrt{29}\le5\sqrt{x+6}+2\sqrt{10-x}\le4\sqrt{29}\)
\(\Rightarrow-2-4\sqrt{29}\le B\le-2+4\sqrt{29}\)
\(\Rightarrow M_{max}=-2+4\sqrt{29}\) khi \(\dfrac{\sqrt{x+6}}{5}=\dfrac{\sqrt{10-x}}{2}\Leftrightarrow x=\dfrac{226}{29}\)
\(\Rightarrow M_{min}=-2-4\sqrt{29}\) dấu của bđt này o xảy ra câu 5 lm tương tự
\(P=sin^4x-cos^4x=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(\Rightarrow P=-\left(cos^2x-sin^2x\right)=-cos2x\)
Do \(-1\le cos2x\le1\Rightarrow-1\le P\le1\)
\(\Rightarrow\left\{{}\begin{matrix}P_{min}=-1\Rightarrow x=k\pi\\P_{max}=1\Rightarrow x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
b/
\(P=sin^6x+cos^6x=\left(sin^2x+cos^2x\right)\left(sin^4x+cos^4x-sin^2x.cos^2x\right)\)
\(P=sin^4x+cos^4x+2sin^2x.cos^2x-3sin^2x.cos^2x\)
\(P=\left(sin^2x+cos^2x\right)^2-\frac{3}{4}\left(2sinx.cosx\right)^2\)
\(P=1-\frac{3}{4}sin^22x\)
Do \(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le P\le1\)
\(\Rightarrow\left\{{}\begin{matrix}P_{min}=\frac{1}{4}\Rightarrow x=\frac{k\pi}{4}\\P_{max}=1\Rightarrow x=\frac{k\pi}{2}\end{matrix}\right.\)
c/
\(P=1-2\left|cos3x\right|\)
Do \(0\le\left|cos3x\right|\le1\Rightarrow-1\le P\le1\)
\(\Rightarrow\left\{{}\begin{matrix}P_{min}=-1\Rightarrow x=\frac{k\pi}{3}\\P_{max}=1\Rightarrow x=\frac{k\pi}{6}\end{matrix}\right.\)
\(M=\frac{sin^2x+2\left(1-sin^2x\right)}{1-sin^2x-4}=\frac{2-sin^2x}{-sin^2x-3}=\frac{2-\left(\frac{1}{2}\right)^2}{-\left(\frac{1}{2}\right)^2-3}=-\frac{7}{13}\)
P= \(1-cos^2x+2cos^2x=1+cos^2x\)
Ta có:
\(0\le cos^2x\le1\)
=> \(1\le P\le2\)
min P=1 <=> \(cos^2x=0\Leftrightarrow cosx=0\Leftrightarrow x=\frac{\pi}{2}+k\pi\)