Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow M-2x=\sqrt{5-x^2}\)
\(\Leftrightarrow M^2-4Mx+4x^2=5-x^2\)
\(\Leftrightarrow5x^2-4Mx+M^2-5=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta'=4M^2-5.\left(M^2-5\right)\ge0\)
\(\Leftrightarrow M^2\le25\)
\(\Leftrightarrow-5\le M\le5\)
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
\(\sqrt{\left(x^2+2x+1\right)+4}=\sqrt{\left(x+1\right)^2+4}\supseteq\sqrt{4}=2\)
=> min M=2 => x=-1
a) ta có : \(\sqrt{2x^2-2x+5}=\sqrt{2\left(x^2-x+\dfrac{5}{2}\right)}=\sqrt{2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{2}}\)
\(=\sqrt{2\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{2}}\ge\sqrt{\dfrac{9}{2}}\)
\(\Rightarrow GTNN\) của biểu thức trên là \(\sqrt{\dfrac{9}{2}}=\dfrac{3}{\sqrt{2}}\) khi \(x=\dfrac{1}{2}\)
b) ta có : \(1-\sqrt{-x^2+2x+5}=1-\sqrt{-x^2+2x-1+6}\)
\(=1-\sqrt{-\left(x-1\right)^2+6}\le1-\sqrt{6}\)
\(\Rightarrow GTLN\) của biểu thức trên là \(1-\sqrt{6}\) khi \(x=1\)d) ta có : \(\dfrac{1}{2x-\sqrt{x}+3}=\dfrac{1}{2\left(x-\dfrac{\sqrt{x}}{2}+\dfrac{1}{16}\right)+\dfrac{23}{8}}\)
\(=\dfrac{1}{2\left(\sqrt{x}-\dfrac{1}{4}\right)^2+\dfrac{23}{8}}\le\dfrac{1}{\dfrac{23}{8}}=\dfrac{8}{23}\)
\(\Rightarrow GTLN\) của biểu thức trên là \(\dfrac{8}{23}\) khi \(x=\dfrac{1}{16}\)
\(M=\sqrt{x^2-2x+11}\)
\(=\sqrt{x^2-2x+1+10}\)
\(=\sqrt{\left(x-1\right)^2+10}\)
Nhận thấy (x - 1)2 \(\ge0\)
=> (x - 1)2 + 10 \(\ge10\)
=> \(\sqrt{\left(x-1\right)^2+10}\ge\sqrt{10}\)
=> Min M = \(\sqrt{10}\)
Dấu "=" xảy ra <=> x - 1 = 0
<=> x = 1
Vậy Min M = \(\sqrt{10}\)khi x = 1
M nhỏ nhất khi \(x^2-2x+11\)nhỏ nhất.
Mà \(x^2-2x+11=\left(x^2-2x+1\right)+10=\left(x-1\right)^2+10\)
Lại có \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+10\ge10\Leftrightarrow x^2-2x+11\ge10\)(đẳng thức xảy ra khi x = 1)
Do đó \(min_{x^2-2x+11}=10\Leftrightarrow x=1\)
Khi đó \(M=\sqrt{x^2-2x+11}=\sqrt{10}\)
Vậy GTNN của M là 10 khi x = 1.
chọn điểm rơi hay sao á
bạn giải được ko?