K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

Lời giải

Do \(\left(x-2y\right)^2\ge0;\left(y-2012\right)^{2012}\ge0\)

Cộng theo vế hai BĐT trên,suy ra \(P\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-2012=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\\y=2012\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4024\\y=2012\end{cases}}\)

Vậy \(P_{min}=0\Leftrightarrow\hept{\begin{cases}x=4024\\y=2012\end{cases}}\)

19 tháng 2 2021

câu này easy thôi

25 tháng 4 2020

A = ( x - 2 )2 + 2019 

    ( x-  2 )2 \(\ge0\forall x\)

=> ( x - 2)2 + 2019 \(\ge2019\)

=> A \(\ge2019\)

Dấu " = " xảy ra <=> ( x - 2)2 =0

                                    <=> x = 2 

b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình 

c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020 

( 3-x )100 \(\ge0\forall x\)

=> - ( 3-x)100 \(\le0\forall x\)

Tương tự : - 3.( y+2)100 \(\le0\forall y\)

=> C \(\le2020\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

25 tháng 4 2020

@Shadow@ Đề câu b) đúng rồi đó

\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)

ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)

=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

17 tháng 2 2019

ko biết mới học lớp 6 hihi

17 tháng 2 2019

Tớ lp 6 nek -__-

Ta có: (x+y-3)^4>=0

(x-2y)^2>=0

=> Q >= 2012=>Qmin=2012

Vậy: Qmin=2012. Dấu "=" xảy ra khi: x=2;y=1

25 tháng 2 2020

Đề bài này thiếu nhé : Phải là : \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)

Ta có : \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\\z=-1\end{cases}}\)

Khi đó : \(A=\left(-1\right)^{2010}-2011\cdot\left(-1\right)^{2011}-\left(-1\right)^{2012}\)

\(=\left(-2011\right)\cdot\left(-1\right)=2011\)

Vậy : \(A=2011\) với x,y,z thỏa mãn đề.

19 tháng 5 2020

Viết đề cx "NGU"

26 tháng 5 2020

1) 

Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y 

=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)

Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0  <=> x = -3 và y = -1

=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5  tại x = -3 và y = -1

=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1 

 2) \(M=2x^4+3x^2y^2+y^4+y^2\)

\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)

26 tháng 3 2020

\(A=\left(x-\frac{2}{5}\right)^2+\left(y+20\right)^{10}+2010\)

+ Ta có:

\(\left\{{}\begin{matrix}\left(x-\frac{2}{5}\right)^2\ge0\\\left(y+20\right)^{10}\ge0\end{matrix}\right.\forall x,y.\)

\(\Rightarrow\left(x-\frac{2}{5}\right)^2+\left(y+20\right)^{10}\ge0\) \(\forall x,y.\)

\(\Rightarrow\left(x-\frac{2}{5}\right)^2+\left(y+20\right)^{10}+2010\ge2010\) \(\forall x,y.\)

\(\Rightarrow A\ge2010.\)

Dấu '' = '' xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-\frac{2}{5}\right)^2=0\\\left(y+20\right)^{10}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\frac{2}{5}=0\\y+20=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0+\frac{2}{5}\\y=0-20\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{2}{5}\\y=-20\end{matrix}\right.\)

Vậy \(MIN_A=2010\) khi \(x=\frac{2}{5}\)\(y=-20.\)

Chúc bạn học tốt!

27 tháng 3 2020

thank you

AH
Akai Haruma
Giáo viên
28 tháng 6 2024

Biểu thức A không có min/ max

Biểu thức B là sao hả bạn?