Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+\dfrac{8}{27x}+\dfrac{8}{27x}\right)+\left(y^2+\dfrac{8}{27y}+\dfrac{8}{27y}\right)+\dfrac{11}{27}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\ge3\sqrt[3]{\dfrac{8^2}{27^2}}+3\sqrt[3]{\dfrac{8^2}{27^2}}+\dfrac{11}{27}.\dfrac{4}{x+y}\)
\(\ge\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{11}{9}=\dfrac{35}{9}\)
\(P=\dfrac{16}{x}+\dfrac{\dfrac{1}{4}}{y}=\dfrac{4^2}{x}+\dfrac{\left(\dfrac{1}{2}\right)^2}{y}\ge\dfrac{\left(4+\dfrac{1}{2}\right)^2}{x+y}=\dfrac{81}{20}\)
\(\Rightarrow P_{min}=\dfrac{81}{20}\) khi \(\left\{{}\begin{matrix}x=\dfrac{40}{9}\\y=\dfrac{5}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=81\\b=20\end{matrix}\right.\) \(\Rightarrow a+b=101\)
Ta có:\(\sum\dfrac{a^2+6a+3}{a^2+a}=\sum\left(1+\dfrac{5a+3}{a^2+a}\right)=3+\sum\dfrac{5a+3}{a^2+a}\)
Có BĐT phụ: \(\dfrac{5a+3}{a^2+a}\ge-\dfrac{7}{2}a+\dfrac{15}{2}\)đúng vì nó tương đương \(\left(7a+6\right)\left(a-1\right)^2\ge0\left(true\right)\)
Áp dụng tương tự ta có:
\(VT\ge3-\dfrac{7}{2}\left(a+b+c\right)+\dfrac{15}{2}.3\ge3-\dfrac{21}{2}+\dfrac{45}{2}=15\)
Dấu = xảy ra khi a=b=c=1
a:
\(A=\left|x-2013\right|+\left|2014-x\right|>=\left|x-2013+2014-x\right|=1\)
Dấu = xảy ra khi 2013<=x<=2014
\(B=\left|x-123\right|+\left|456-x\right|>=\left|x-123+456-x\right|=333\)
Dấu = xảy ra khi 123<=x<=456
b: \(\left|x\right|+2004>=2004\)
=>A<=2013/2004
Dấu = xảy ra khi x=0
\(B=\dfrac{\left|x\right|+2002+1}{\left|x\right|+2002}=1+\dfrac{1}{\left|x\right|+2002}< =1+\dfrac{1}{2002}=\dfrac{2003}{2002}\)
Dấu = xảy ra khi x=0
Câu 2:
\(A=2\cdot\dfrac{1}{2}+3\cdot\dfrac{1}{2}+1=1+1+1=3\)
Bài 3:
\(cos^2a=1-\left(\dfrac{12}{13}\right)^2=\dfrac{25}{169}\)
mà cosa>0
nên cosa=5/13
=>tan a=12/5; cot a=5/12
Câu 4: \(sin^2a=1-\dfrac{1}{4}=\dfrac{3}{4}\)
mà sina <0
nên sin a=-căn 3/2
=>tan a=-căn 3
\(A=-\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\cdot\left(-\sqrt{3}\right)=-\sqrt{3}\)
Bài 1:
a)
\(\sin ^2x+\sin ^2x\cot^2x=\sin ^2x(1+\cot^2x)=\sin ^2x(1+\frac{\cos ^2x}{\sin ^2x})\)
\(=\sin ^2x.\frac{\sin ^2x+\cos^2x}{\sin ^2x}=\sin ^2x+\cos^2x=1\)
b)
\((1-\tan ^2x)\cot^2x+1-\cot^2x\)
\(=\cot^2x(1-\tan^2x-1)+1=\cot^2x(-\tan ^2x)+1=-(\tan x\cot x)^2+1\)
\(=-1^2+1=0\)
c)
\(\sin ^2x\tan x+\cos^2x\cot x+2\sin x\cos x=\sin ^2x.\frac{\sin x}{\cos x}+\cos ^2x.\frac{\cos x}{\sin x}+2\sin x\cos x\)
\(=\frac{\sin ^3x}{\cos x}+\frac{\cos ^3x}{\sin x}+2\sin x\cos x=\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin x\cos x}=\frac{(\sin ^2x+\cos ^2x)^2}{\sin x\cos x}=\frac{1}{\sin x\cos x}\)
\(=\frac{1}{\frac{\sin 2x}{2}}=\frac{2}{\sin 2x}\)
Bài 2:
Áp dụng BĐT Cauchy Schwarz ta có:
\(P=\frac{a^2}{\sqrt{a(2c+a+b)}}+\frac{b^2}{\sqrt{b(2a+b+c)}}+\frac{c^2}{\sqrt{c(2b+c+a)}}\)
\(\geq \frac{(a+b+c)^2}{\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}}(*)\)
Tiếp tục áp dụng BĐT Cauchy-Schwarz:
\((\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq (a+b+c)(2c+a+b+2a+b+c+2b+c+a)\)
\(\Leftrightarrow (\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq 4(a+b+c)^2\)
\(\Rightarrow \sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}\leq 2(a+b+c)(**)\)
Từ \((*); (**)\Rightarrow P\geq \frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\)
Dấu "=" xảy ra khi $a=b=c=1$
\(Q=\dfrac{a}{b+mc}+\dfrac{b}{c+ma}+\dfrac{c}{a+mb}\)
\(=\dfrac{a^2}{ab+mac}+\dfrac{b^2}{bc+mab}+\dfrac{c^2}{ac+mbc}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{\left(m+1\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(m+1\right)\left(ab+bc+ca\right)}\)
\(=\dfrac{3}{m+1}\)
\(A=3x^2-\dfrac{9x}{4}+\dfrac{3}{16x}=\left(3x^2-3x+\dfrac{3}{4}\right)+\left(\dfrac{3}{16x}+\dfrac{3x}{4}\right)-\dfrac{3}{4}\)
\(=3\left(x-\dfrac{1}{2}\right)^2+\left(\dfrac{3}{16x}+\dfrac{3x}{4}\right)-\dfrac{3}{4}\)
\(\ge2\sqrt{\dfrac{3}{16}.\dfrac{3}{4}}-\dfrac{3}{4}=0\)
Vậy GTNN là A = 0 khi \(x=\dfrac{1}{2}\)